
COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(3) 12-19 Adadi N, Berrada M, Chenouni D, Bounabat B

12
MATHEMATICAL AND COMPUTER MODELLING

Proposition of web services composition approach basing of
model-driven approach and multi-agent systems

N Adadi1*, M Berrada1, D Chenouni1, B Bounabat2
1IPI Laboratory, Sidi Mohamed ben Abdellah University, Fez, Morocco

2Al-Qualsadi Research & Development Team, ENSIAS, Mohammed V – Souissi University, Rabat, Morocco

*Corresponding author: nouha.adadi@usmba.ac.ma

Received 23 February 2017, www.cmnt.lv

Abstract

Web services composition is an emerging paradigm for application integration within and across organizations
and enterprises. For this reason, various approaches and formalism have been proposed and used for web
services composition. Among these approaches we have the Models Driven Approach (MDA), which
concentrates on the realization of abstract models. Thus, the phase of specification represents an important
part of the cycle of development of composite web service. To proceed to this cycle of development, a
developer has to elaborate a specification which allows the modelling of the global behaviour of the system,
to verify formally this model for assuring his quality, then pass to the implementation of the composed service.
In the paper we present a summary of our proposed approach of web services composition based on MDA,
thus it is separated into three tasks: specification using BPMN notation and Multi-agent reactive decisional
(MARDS) model, formal verification using LOTOS language and implementation using BPEL language.
Then we present a case study to prove the feasibility and reliability of our proposed approach.

Keywords:

Web services

composition

MDA; Specification

MARDS

Formal verification

1 Introduction

Nowadays Web Services are defined as software components,
which can be invoked by application programs through a
stack of Internet standards. Once deployed, web services
provided by various organizations can be inter-connected in
order to implement business collaborations, leading to
composite web services. In the literature several approaches
are proposed in order to compose web services, these
approaches can be grouped into four classes: workflow-based
approaches [1], approaches based on artificial intelligence
planning techniques [2], approaches based on dependence
graphs [3], and model-driven approaches.

Model-driven approach (MDA) concentrate on the

realization of abstract models rather than on computer or

algorithmic concepts. The specification phase is therefore

particularly important in an MDA approach and represents

a significant part of the development cycle. This allows

developers to focus on the desired behaviour of the system,

regardless of how to implement it. The partial generation of

low level, code from the specification also reduces the time

and therefore the development costs. For these reasons, we

present a solution of web services composition faithful to

the principles of Model-driven approach.

The layout of this paper is as follows. In the second

section, we present a summary of our proposed approach of

web services composition, the third section is devoted to the

case study, we present a web services scenario that is used

to apply and explain the different steps of our proposed

development process. The conclusion and future work are

presented in section IV.

2 Proposed approach

In this section, we present a summary of our proposed
approach based on MDA and we explain the process of
development of composite service. The figure 1 shows the
steps involved in the proposed development process
(specification, formal verification and implementation) to
better understand how to proceed.

FIGURE 1 Process of development of composite service

2.1 PHASE OF SPECIFICATION

The specification phase is very important because it allows
to detach from the implementation to realize clear abstract
models, helping to the overall understanding of the system.

COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(3) 12-19 Adadi N, Berrada M, Chenouni D, Bounabat B

13
MATHEMATICAL AND COMPUTER MODELLING

Furthermore, this specification is generally sufficiently
expressive to serve as a basis for the implementation and
even possibly to enable the generation of code in an
automated manner.

In the process presented in figure 1, once the requested
services are selected by the directory we pass to the
specification stage. At this level we propose a modelling
based on MARDS (Multi-Agent Reactive Decisional
System) model [4], and using the BPMN notation (Business
Process Model and Notation) [5]. The MARDS model,
constitutes an approach among the newest and most useful
ones for the composing and modeling of complex system
such as the automated systems of production, the mobile
systems [6] and organizational system [4]. We have used
this system in our approach because it allows to model the
composition of services in a simple and powerful way, and
in well-structured architecture. The BPMN notation, is a
modeling language, it is more adapted to the domain of the
Web services, legible and sufficiently precise and
expressive to allow the generation of executable code from
it. We have used this notation for modeling the processes
generated from the composed web services on orchestration
mode. This modeling phase is described in detail in [7].

2.2 PHASE OF VERIFICATION AND
IMPLEMENTATION

Our approach considers not only the specification of
compound services but also their verification. The
verification step is essential for any software development
approach, it ensures the reliability and quality of the system
and also helps to reduce costs since the discovery of design
errors after putting into production of a system can entail
significant costs. As it is better to detect errors as early as
possible in the cycle of development, from the specification
stage, the next step is the qualitative formal verification of
our proposed model. This type of verification consist of the
description of the expected behavior of the program,
measured at a certain level of abstraction. The model of the
system and behavioral properties described by the developer
must be represented by a formal language so that they can
be interpreted by formal verification tools which gives the
result of verification. Our specification is described by the
BPMN notation, but this language is often criticized for its
lack of formality. One proposed solution is to transform the
BPMN model in formal specification. Any formal
specification language is susceptible to agree, but we
propose the use of the process algebra LOTOS [8] which
has the advantage of being supported by free formal
verification tools such as CADP [9] toolbox. Due to CADP,
it is possible to validate automatically the behavioral
properties. In case where errors are detected, the developer
is responsible for correct and refine its model to arrive at a
model proven correct. The formal verification step is the
object of [10] where there is more detail and description.

When the composition model is validated, the next step

is the implementation of the system by generating BPEL [11]

executable code from the BPMN specification. Finally, once

the composed service is implemented, the last step is usually

to publish it in the directory to facilitate its future use. More

details and descriptions of this step of implementation are

gives in [12].

We will provide in the next section a case study that
allow to develop a composite service end-to-end using our
development approach described previously.

3 Case study: E-health

Our proposed approach is based on standardized and
powerful languages, templates and technologies; therefore it
can solve problems of web services composition in different
application domains and at all levels of complexity. We
choose the health sector in view of his importance in the
daily life of the citizens and for improving the quality of its
services particularly to minimize the time of patient
receptions and avoid blocking.

3.1 COMPOSITION SCENARIO

The following describes a typical scenario of patient journey
in a hospital, in each stage of this scenario different web
services can be used to inform gradually and continuously
the patient's administrative and medical record.

The process is triggered by the appointment request

from the patient. Once the patient is admitted, the hospital

takes charge of the patient. A medical secretary reveals the

patient's administrative record (if it exists, if not it creates it)

and leads the patient in consultation with the doctor with

whom he made an appointment and becomes the physician

in charge. In order to carry out its consultation, the physician

may need to access other services, such as medical record

service, in order to consult and update the patient's data,

status, antecedents and its history, the pharmacy service to

help him to prescribe his prescription, radiology and

laboratory services to request analyses and radios and

receive the results. If it is necessary other services and

processes can be triggered after this consultation as the

hospitalization and operating block service depending on

the case and the need of the patient. In all cases and at each

stage the billing service is necessary to automatically

appreciate the benefits and consumptions of the patient. The

edition of the invoices can intervene other services like that

of the insurance and the bank.
The scenario presented will be dealt throughout this

document and in all stages of development.

3.2 MODELLING PHASE

3.2.1 Structure of the service composition modelling

Applying the rules and methods described in [7] and [12] to
the "Online hospital" scenario, we obtain the MARDS
structure shown in figure 2.

In this model of service composition, the basic

components are: "Administrative Record" (AR); "Medical

staff " (MS); "Appointment”; "Insurance"; "Bank";

"Medical Record” (MR); "Radiology"; "Laboratory";

"Pharmacy"; "Bed" and "Operating Block" (OB). The

intermediate components are: "Home"; "Billing";

"Consultation"; "Hospitalization"; "Technical Service"(TS);

"Administrative Service"(AS) and "Medical Service"(MS).

The main composite component is "E-hospital".

COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(3) 12-19 Adadi N, Berrada M, Chenouni D, Bounabat B

14
MATHEMATICAL AND COMPUTER MODELLING

FIGURE 2 Web service composition model based on MARDS

3.2.2 Structure of the service composition modelling

Figures 3 and 4 show the business model presented in the

BPMN diagram of the composition of web services.

The "A_OnlineHospital" action received by the main

component (orchestrator) "E-hospital" generates two decisions

{D1_ManageAdministration; D2_ManageMedicalUnit}.

Each decision corresponds to a sub-action received by one of

the services of the low level in the MARDS hierarchy. The first

decision "D1_ManageAdministration" generates the sub-

action "A_ManageAdministration". The second decision

"D2_ManageMedicalUnit" generates the sub-action

"A_ManageMedicalUnit".

The action "A_ManageAdministration" received by the

component "AdministrativeService" generates two decisions

{D1_ManagePatientInput; D2_ManagePatientOutput}. Each

decision corresponds to a sub-action received by one of the

services of the low level in the hierarchy. The first decision

"D1_ManagePatientInput" generates the sub-action

"A_ManageHome". The second decision

"D2_ManagePatientOutput" generates the sub-action

"A_Innvoice".

The action "A_ManageMedicalUnit" received by the

"MedicalService" component generates the decision

"D_ManageMedicalUnit". This decision generates three

parallel sub-actions "A_ManageConsultation";

"A_ManageHospitalization" and "A_ManageOperatingBlock"

received respectively by the services "Consultation";

"Hospitalization" and "OperatingBlock".

The sub-action "A_ManageHome" received by the

"Home" component generates a sub-decision

"D_ManageHome". On his part, this sub-decision generates

three parallel sub-actions {A_IdentifyPatient; A_consultMS;

A_PlanAppointment} for the components

"AdministrativeRecord"; "MedicalStaff" and

"Appointment". The three sub-actions correspond to the

subprocess of the sub-action "A_ManageHome".

The sub-action "A_Invoice" received by the "Billing"

component generates a sub-decision "D_Invoice". On his

part, this sub-decision generates two parallel sub-actions

{A_ConsultInsurance; A_consultBank} for the components

"Insurance" and "Bank". The two sub-actions correspond to

the sub-process of the "A_Invoice" sub-action.

The sub-action "A_ManageConsultation" received by the

"Consultation" component generates a sub-decision

"D_AchieveConsultation". On his part, this sub-decision

generates two parallel sub-actions {A_ ConsultAR;

A_ConsultTS} for the "MedicalRecord" and "TechnicalService"

components. The two sub actions correspond to the sub-process

of sub-action "A_Manage Consultation".

The "A_ManageHospitalization" sub-action received by

the "Hospitalization" component generates a sub-decision

"D_AchieveHospitalization". From its role this sub-

decision generates three parallel sub-actions {A_AffectBed;

A_ConsultMR; A_ConsultTS} for the components "Bed";

"MedicalRecord" and "TechnicalService". The three sub-

actions correspond to the sub-process of sub-action

"A_ManageHospitalization".

The sub-action "A_ConsultTS" received by the

"TechnicalService" component generates a sub-decision

"D_ConsultTS". From its role this sub-decision generates three

parallel sub-actions {A_ConsultPharmacy; A_ConsultRadio;

A_ConsultLabo} for "Pharmacy" components; "Radiology"

and "Laboratory". The three sub-actions correspond to the sub-

process of the "A_ConsultTS" sub-action.

The sub-actions {A_ManageOperatingBlock;

A_ConsultPharmacy; A_ConsultRadio; A_ConsultLabo;

A_AffectBed; A_ConsultMR; A_ConsultInsurance;

A_consultBank; A_IdentifyPatient, A_consultMS,

A_PlanAppointment} received respectively by the basic

components "OperatingBlock"; "Pharmacy"; "Radiology";

"Laboratory"; "Bed"; "AdministrativeRecord";

"MedicalRecord"; "Insurance"; "Bank"; "MedicalRecord";

"MedicalStaff" and "Appointment" generate the external

states {XS_OperatingBlockPlanified; XS_PharmacyResults;

XS_RadioResults; XS_LaboResults; XS_BedAffected;

XS_MRConsulted; XS_InsuranceResult; XS_ExpensesPaid;

XS_ARcreated; XS_MSAgenda; AppointmentPlanified}.

The sub process "ManagePatientInput";

"ManagePatientOutput"; "AchieveConsultation"

"AchieveHospitalization" and "ConsultTS" generate

respectively the external states "HomeSet"; "InvoicePaid";

"XS_ConsAchieved"; "XS_HospAchieved" and

“XS_TSConsulted".

COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(3) 12-19 Adadi N, Berrada M, Chenouni D, Bounabat B

15
MATHEMATICAL AND COMPUTER MODELLING

FIGURE 3 BPMN Diagram of "E-Health" Composition Scenario (Part 1)

FIGURE 4 BPMN Diagram of "E-Health" Composition Scenario (Part 2)

COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(3) 12-19 Adadi N, Berrada M, Chenouni D, Bounabat B

16
MATHEMATICAL AND COMPUTER MODELLING

3.3 VERIFICATION PHASE

As part of our model driven approach, service composition
is expressed as a workflow or business process. This
composition model can then be transformed into a formal
specification described with LOTOS [14]. The goal of this
transformation is to obtain a specification that can be
verified formally and automatically using a tool that
supports LOTOS input. CADP [15] is the most popular and
successful tool for verifying models expressed with LOTOS.
Indeed, the verification phase consists of two essential steps,
the translation of the BPMN business model into a LOTOS
specification and then the use of the CADP tool to verify the
properties of the system and validate the model before
embarking on the implementation phase.

3.3.1 Translation of BPMN modelling to LOTOS formal
specification

To translate the BPMN notation depicted in figures 3 and 4
into LOTOS we are going to follow these steps:

 Define a process for each step of the activity
(including initial and final nodes). Each process is
defined by a set of behaviors.

 Assign an identifier (integer) to each of process.
 Define the gates, which are the channels of

communication between processes. The peculiarity
of our modeling with the SMARD model is that
communication between services is done via the
communication interfaces that receive and send
actions and decisions, so we can consider these
interfaces as processes (INTRF0, INTRF1 ...
INTRFn). The actions and decisions sent and
received by the services and communication
interfaces are considered LOTOS gates (INPUTi,
OUTPUTi) when i between 0 and n. Indeed services
processes can communicate with each other through
these gates, thanks to INTRF0…INTRFn processes.

 Define the operations between processes, in our
example all service processes are executed
concurrently using the ||| operator, which means that
they are independent and they do not communicate
directly with each other, but they use INTRFi
process. Note however that the
|[INPUTi,OUTPUTi]| operator is used to
synchronize the service processes with the INTRFi
process through the gates INPUTi and OUTPUTi,
when i between 0 and n.

 Identify the control-flow patterns in the workflow in
order to provide a definition (implementation) for
each process.

The instantiation of the processes in LOTOS is provided
as follow.

Specification Online_Hospital[INPUT,OUTPUT,

INPUT0,OUTPUT0,INPUT1,OUTPUT1,INPUT2,OUTPUT2,INPUT3,

OUTPUT3,INPUT4,OUTPUT4,INPUT5,OUTPUT5,INPUT6,OUTPU

T6,INPUT7,OUTPUT7]:noexit

behaviour

Init [INPUT, OUTPUT](0)|[INPUT,OUTPUT]| Ehospital[INPUT,

OUTPUT,INPUT0,OUTPUT0] (1)

|||

(Ehospital [INPUT, OUTPUT,INPUT0,OUTPUT0](1)

|||

AdministrativeService[INPUT0,OUTPUT0,INPUT1, OUTPUT1](2)

|||

MedicalService[INPUT0,OUTPUT0,INPUT2,OUTPUT2](3)

|||

final[INPUT0,OUTPUT0](4))|[ENV0,REC0]|

INTERF0 [INPUT0,OUTPUT0]

|||

(AdministrativeService[INPUT0,OUTPUT0,INPUT1, OUTPUT1](2)

|||

Home[INPUT1,OUTPUT1,INPUT3,OUTPUT3] (5)

|||

Billing[INPUT1,OUTPUT1,INPUT4,OUTPUT4](6))

|[INPUT1,OUTPUT1]|INTERF1 [INPUT1,OUTPUT1]

|||

(MedicalService[INPUT0,OUTPUT0,INPUT2, OUTPUT2](3)

|||

Consultation [INPUT2,OUTPUT2,INPUT5,OUTPUT5] (7)

|||

Hospitalization [INPUT2,OUTPUT2,INPUT6,OUTPUT6](8)

|||

OperatingBlock[INPUT2,OUTPUT2](9))

|[INPUT2,OUTPUT2]|

INTERF2 [INPUT2,OUTPUT2]

||| (Accueil

[INPUT1,OUTPUT1,INPUT3,OUTPUT3](5)

|||

AdministrativeRecord[INPUT3,OUTPUT3] (10)

|||

PersonnelMedical [ENV3, REC3](11)

|||

RendezVous [ENV3, REC3](12)) |[INPUT3,

OUTPUT3]|INTRF3 [INPUT3, OUTPUT3] |||

(Billing [INPUT1,OUTPUT1,INPUT4,OUTPUT4](6)

|||

Insurance [INPUT4,OUTPUT4](13)

|||

Bank [INPUT4,OUTPUT4](14))

|[INPUT4,OUTPUT4]|INTRF4 [INPUT4,OUTPUT4]

|||

(Consultation[INPUT2,OUTPUT2,INPUT5,OUTPUT5](7)

|||

MedicalRecord [INPUT5,OUTPUT5,INPUT6, OUTPUT6] (15)

|||

TechnicalService [INPUT5,OUTPUT5,INPUT6, OUTPUT6,

INPUT7,OUTPUT7](16))

|[INPUT5,OUTPUT5]|INTRF5 [INPUT5,OUTPUT5]

|||

(Hospitalization [INPUT2,OUTPUT2,INPUT6, OUTPUT6](8)

|||

MedicalRecord [INPUT5,OUTPUT5,INPUT6, OUTPUT6] (15)

|||

TechnicalService [INPUT5,OUTPUT5,INPUT6,

OUTPUT6,INPUT7,OUTPUT7](16)

|||

Bed [INPUT6, OUTPUT6](17)) |[INPUT6,

OUTPUT6,]|INTERF6[INPUT6,OUTPUT6,]

|||

(TechnicalService [INPUT5,OUTPUT5,INPUT6, OUTPUT6,INPUT7,

OUTPUT7](16) |||

Pharmacy [INPUT7,OUTPUT7] (18)

|||

Radiology [INPUT7,OUTPUT7](19)

|||

Laboratory [INPUT7,OUTPUT7](20))

|[INPUT7, OUTPUT7]|INTRF7 [INPUT7, OUTPUT7]

where

(*Definition of process*)

endspec

To complete the implementation of the above
specification. We go on to define the processes declared in
the behaviour section. In our specification we have to define
several processes, we choose some to define it in this work.

 "Init" process
The "Init" process (Id:0) merely starts the "Ehospital"

COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(3) 12-19 Adadi N, Berrada M, Chenouni D, Bounabat B

17
MATHEMATICAL AND COMPUTER MODELLING

process (Id:1). As a consequence, it uses the sequence
pattern before exiting.

In Sequence process, an activity identified by dst_id
should be executed after the completion of the activity
identified by Emt_id in the workflow, we say that both
activities are then executed sequentially.

process Init [INPUT, OUTPUT](Id:Int): exit:=

Sequence [INPUT, OUTPUT] (Id, 1) >> exit

where process Sequence

[INPUT, OUTPUT] (Emt_Id:Int, dst_Id:Int): exit := ENV

!dst_Id !Emt_Id !RUN !void; exit endproc

endproc

 "Ehospital" process
The "Ehospital" process waits for a RUN message from

"Init" before starting. After that, it realizes an sequence
between "AdministrativeService" (Id:2) and
"MedicalService" process (Id:3).

process Ehospital[INPUT, OUTPUT, INPUT0, OUTPUT0] (Id:Int):

exit:= OUTPUT ! Id ! 0 of Int ! RUN ! Void;

Sequence [INPUT0, OUTPUT0] (Id,2 of Int)

>> Sequence [INPUT0, OUTPUT0] (Id,3 of Int)

>>exit where

(*Definition of Sequence process*)

endproc

 "AdministrativeService" Process
The "AdministrativeService" process waits for a RUN

message from the "Ehospital" process before starting
sequentially the "Home" (Id:5), "Billing" (Id:6) processes.

process AdministrativeService

[INPUT0,OUTPUT0,INPUT1,OUTPUT1] (Id:Int) : exit:=

OUTPUT0 ! Id ! 1 of Int ! RUN ! Void; Sequence

[INPUT1,OUTPUT1] (Id,5 of Int) >> Sequence

[INPUT1,OUTPUT1] (Id,6 of Int) >>exit

where

(*Definition of Sequence process*)

endproc

 "Consultation" process
The "Consultation" process waits for a RUN message

from the "MedicalService" process before starting
concurrently the Reservation_Hairfare (Id:4) and
"MedicalRecord" (Id:15) and "TechnicalService" (Id:16)
processes, thus realizing a parallel split pattern.

In ParallelSplit process, the identifiers of the activities
(dsts_Id) are passed in parameters to the process as a set of
integers (IntSet). The process needs to iterate over this set
and send a RUN message to each activity identified in the
set. However, recursion is the only way to realize cyclical
behavior in LOTOS. As a consequence, the ParallelSplit
process is calling itself recursively and removing already
processed dst from the set in order to iterate over it.

process Consultation [INPUT2,OUTPUT2,INPUT5, OUTPUT5]

(Id:Int) : exit:= OUTPUT2 ! Id ! 3 of Int ! RUN ! Void;

ParallelSplit[INPUT5,OUTPUT5](Id,insert(15, insert(16, emptyset))

where process ParallelSplit [INPUT5,

OUTPUT5] (Emt_Id:Int, dsts_id:IntSet) : exit := [empty(dsts_id)] ->

exit []

[not(empty(dsts_id))] -> (let

dst:Int=pick(dsts_id) in INPUT5 !dst !

Emt_Id !RUN !void; BranchementMultiple [INPUT5,

OUTPUT5] (Emt_Id, remove(dst, dsts_id))) endproc

endproc

 "OperatingBlock" process
The "OperatingBlock", Like all atomic process, waits

for a RUN message from other process in Upper layer
before exiting.

Process OperatingBlock [INPUT2,OUTPUT2] (Id:Int) : noexit:=

OUTPUT2 ! Id ! 3! RUN ! Void; stop

endproc

3.3.2 Formal verification with CADP

In the second step of verification, and after the LOTOS
specification is developed, we use the CADP toolkit [9] and
especially the Caesar compiler in order to transform the
description of the LOTOS composition into a mathematical
representation in the form of a labeled transitions system
(LTS) [13] on which it will be possible to verify certain
behavioral properties. The developer's task is to define
behavioral properties using μ-calculus [14] and verify them
using the EVALUATOR compiler in CADP.

3.3.2.1 Using of Caesar compiler

Caesar is a compiler that can be used to transform a LOTOS
specification into a mathematical representation. The
mathematical representation used is LTS. Caesar takes the
LOTOS program to check, as well as an implementation in
C for the abstract types it contains (either written by hand or
generated automatically by Caesar.adt). Output Caesar
produces a LTS. The information contained in this LTS can
be used by various tools like automation reducers, temporal
or computational logic evaluators and diagnostic tools.

The LTS graph illustrated in figure 5 present the result
of compilation of LOTOS specification described
previously using Caesar Compiler.

FIGURE 5 LTS generated and reduced by CADP

COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(3) 12-19 Adadi N, Berrada M, Chenouni D, Bounabat B

18
MATHEMATICAL AND COMPUTER MODELLING

3.3.2.2 Using of EVALUATOR

EVALUATOR is a tool for on-the-fly verification of models
integrated into CADP environment. The tool operates by
taking two inputs. The first entry corresponds to the model
in the form of an LTS, on which the verification is to be
performed. The second input is a temporal property to be
verified, expressed in the form of a formula with μ-calculus
[14]. EVALUATOR will mathematically explore all
possible execution branches on the generated LTS in order
to prove that the property is verified (or not). The temporal
property, defined by the developer and supplied to
EVALUATOR, characterizes a behavior within the model.
As part of our case study, we define a set of properties that
would be useful to check in our example.

Property 1: We want to prove that a user can always
execute the action to plan an appointment when the patient
is identified and the practitioner's agenda is consulted. The
property is translated to regular expression μ-calculus here
as follows.

macro Lead (A, B) =[true_.(A)]mu X.(<true> true and [not (B)] X)

end_macro

macro IdentifierPatient() = ’ENV3!POS(10)!POS(5)!RUN.*’

end_macro

macro ConsulterAgenda() = ’ENV3!POS(11)!POS(5)!RUN.*’

end_macro

macro PlanifierRDV() = ’ENV3!POS(12)!POS(5)!RUN.*’

end_macro
Mener (IdentifierPatient and ConsulterAgenda, PlanifierRDV)

Property 2: We now want to show that a user can not
plan an appointment without identifying the patient and
consulting the practitioner's agenda. This is to verify that the
inverse operation of property 1. The property is translated
here as follows.

macro Lead (A, B) =[true_.(A)]mu X.(<true> true and [not (B)] X)

end_macro

macro IdentifierPatient() = ’ENV3!POS(10)!POS(5)!RUN.*’

end_macro

macro ConsulterAgenda() = ’ENV3!POS(11)!POS(5)!RUN.*’

end_macro

macro PlanifierRDV() = ’ENV3!POS(12)!POS(5)!RUN.*’

end_macro
Mener (not[PlanifierRDV], [ConsulterAgenda]false And

[PlanifierRDV]false)

The formal verification step can be repeated iteratively
until a correct and refined composition model is obtained.
The model can then be used as the basis for the
implementation. More precisely, this is directly
transformable into executable code.

3.4 IMPLEMENTATION PHASE

The implementation phase includes the generation of
BPEL4WS [11] executable code from the BPMN model. Our
BPMN model is based on SMARD system, therefore a
description of the behaviour of a SMARD system under
BPEL4WS is necessary. This description is the object of [12].

A complete BPEL description of the proposed business
model should include the WSDL interfaces of the different
services involved in the composition and the BPEL codes of
the main process "E-hospital", the sub-processes for
composite agents, and the web services performed by simple
agents. As follow, we present the BPEL implementation of
main process "E-hospital".

<!—Definition of main process of composition-->

<process name="Ehopital ">

<!-- Declaration of partnerLinks -->

<PartnerLinks>

<PartnerLink name = "Ehospital.A_OnlineHospital"

partnerLinkType = " Ehospital.A_OnlineHospital_LT"

myRole = " A_OnlineHospital_Role"

partnerRole = "A_OnlineHospital Callback_Role" />

<PartnerLink name =

"AdministrativeService.A_ManageAdministration"

partnerLinkType = "

AdministrativeService.A_ManageAdministration_LT"

myRole = " A_ ManageAdministration_Role"

partnerRole = " A_ ManageAdministrationCallabck_Role" />

<PartnerLink name = "MedicalService.A_ManageMedicalUnit"

partnerLinkType = "MedicalService.A_ManageMedicalUnit_LT"

myRole = "A_ManageMedicalUnit_Role"

partnerRole = " A_ManageMedicalUnitCallback_Role" />

</PartnerLinks>

<!-- Declaration of variables -->

<variables>

<!—Input/output for Ehospital process -->

<variable name="Action_Ehospital" messageType=" StartState"/>

<variable name="ExternalState_Ehospital" messageType=" EndState"/>

<!— Input/output for MedicalService process -->

<variable name="Action_MedicalService" messageType="

StartState"/>

<variable name=" ExternalState_MedicalService" messageType =

"EndState"/>

<!— Input/output for AdministrativeService process -->

<variable name="Action_AdministrativeService" messageType="

StartState "/>

<variable name=" ExternalState_AdministrativeService "

messageType="EndState"/>

</variables>

<!-- Definition of process main body-->

<sequence>

<receive partnerLink=" Ehospital.A_OnlineHospital"

portType=" Ehospital.A_OnlineHospital_PT"

operation="A_OnlineHospital "

Variable="Action_Ehospital"

CreateInstance="Yes" />

<!-- Decision Name = D1_ManageAdministration -->

<Flow>

<!-- Action = “A_ManageAdministration ”, Action =

AdministrativeService -->

<sequence>

<assign>

<copy>

<from expression="A_MangeAdministration"/>

<to variable="Action_AdministrativeService" part="Message"/>

</copy>

</assign>

<invoke partnerLink=" AdministratifService.A_ManageAdministration"

portType=" AdministratifService.A_ManageAdministration_PT"

operation=" A_ManageAdministration"

inputVariable="Action_AdministrativeService" />

<receive partnerLink=

"AdministrativeService.A_ManageAdministration"

portType= "AdministrativeService.A_GererAdministrationCallBack"

operation="A_ManageAdministrationCallBack"

Variable="EtatExterne_AdministrativeService" />

</sequence>

</Flow>

<!-- Decision Name = D2_ManageMedicalUnit-->

<Flow>

<!-- Action = “A_ManageMedicalUnit”, Action = MedicalService --

>

<sequence>

<assign>

<copy>

<from expression="A_GererUniteSoin"/>

<to variable="Action_ServiceMedical" part="Message"/>

</copy>

</assign>

COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(3) 12-19 Adadi N, Berrada M, Chenouni D, Bounabat B

19
MATHEMATICAL AND COMPUTER MODELLING

<invoke partnerLink="MedicalService.A_ ManageMedicalUnit"

portType=" MedicalService.A_ManageMedicalUnit_PT"

operation=" A_ManageMedicalUnit"

inputVariable="Action_MedicalService" />

<receive partnerLink=" MedicalService.A_ManageMedicalUnit"

portType=" MedicalService.A_ManageMedicalUnit CallBackPT"

operation=" A_ManageMedicalUnitCallBack"

Variable="EtatExterne_MedicalService" />

</sequence>

</Flow>

<invoke partnerLink=" Ehospital.A_OnlineHospital"

portType=" Ehospital.A_OnlineHospitalCallBack_PT"

operation=" A_OnlineHospitalCallBack"

outputVariable=" EtatExterne_Ehospital" />

</sequence>

</process>

5 Conclusions

In this work, an approach for the specification, formal

verification and implementation of composite Web services
is proposed. It is a model-driven approach faithful to the
MDA principles.

Our approach of composition of web services is based
on standardized and powerful languages, templates and
technologies (MARDS model, BPMN Notation, BPEL
language, LOTOS language, CADP tool), therefore it can
solve problems of the web services composition in different
application domains and at all levels of complexity. As part
of a case study, we chose the health sector and we have
detailed each step of our proposed approach, to better
explain, illustrate and help to understand this approach.

For the prospects, we are currently working on the
automatic transformation of BPMN models into LOTOS
models and BPEL code. This work is important to facilitate
the task of the developer and to make the steps of formal
verification and implementation simple, rapid and
completely automatic.

References

[1] Ardagna D, Comuzzi M, Mussi E, Pernici B, Plebani P 2007 Paws: A

framework for executing adaptive web-service processes IEEE

Software 24 39–46

[2] Lécué F, Léger A, Delteil A 2008 DL Reasoning and AI Planning for

Web Service Composition Web Intelligence 445–53

[3] Ying L 2010 A Method of Automatic Web Services Composition

Based on Directed Graph, cmc International Conference on

Communications and Mobile Computing 1 527-31

[4] Berrada M, Bounabat B, Harti M 2007 Modeling and simulation of

Multi-Agent reactif decisionnal systems using business process

management concepts International Review on Computers and

Software (IRECOS) 2(2) 159-69

[5] BPMI.org. 2006 Business Process Modeling Notation Specification.

OMG Final Adopted Specification http://www.bpmn.org/

[6] Aaroud A, Labhalla S E, Bounabat B 2005 Modelling the handover

function of global system for mobile communication The International

Journal of Modelling and Simulation, ACTA Press 25(2)

[7] Adadi N, Berreda M, Chenouni D, Bounabat B 2014 Multi-Agent

Architecture for Business Modeling of Web Services Composition

based on WS2JADE Framework International Review on Computers

and Software (IRECOS)

[8] Bolognesi T, Brinksma E 1989 Introduction to the iso specification

language lotos. The Formal Description Technique LOTOS 23–73

[9] Fernandez J C, Garavel H, Kerbrat A 1996 Cadp-a protocol validation

and verification toolbox Proc. of International Conference on

Computer Aided Verification
[10] [7] Adadi N, Berreda M, Chenouni D 2016 Formal Specification of

Web Services Composition using LOTOS International Journal of

Computer Technology and Applications (IJCTA)

[11] OASIS Standard. Web services business process execution language

version 2.0, April 2007

[12] Adadi N, Berreda M, Chenouni D, Bounabat B Modeling and

Simulation of Web Services Composition Based on MARDS Model

10th International Conference on Intelligent Systems Theories and

Applications SITA‘15

[13] Katoen Joost-Pieter 2005 Labelled transition systems Model-Based

Testing of Reactive Systems 3472 615–6 2 citations aux pages 74 et 98

[14] Emerson E A, Lei C L 1986 Efficient model checking in fragments of

the propositional mu-calculus Proceedings of the 1st LICS 267–78

IEEE Computer Society Press 2 citations aux pages 99 et 132

AUTHORS

Nouha Adadi, 06/06/1989, Fez

Computer engineering degree from the National School of Applied Sciences (ENSA), Sidi Mohamed Ben Abdellah University, Fes,

Morocco, in 2012.

Major Fields: development, databases, network, security.

Research interests: multi-agent system, web services, autonomic computing.

Mohammed Berrada

Received the Ph.D. degree in Computer Sciences from the faculty of Sciences, Sidi Mohammed ben Abdellah University (USMBA),

Fez, Morocco, in 2008.

He is currently a member of LSIS Laboratory and an Assistant Professor of Computer Sciences at ENSAF (National School of

Applied Sciences of Fez), USMBA, Fez, Morocco. His current research interests include Multi-Agent systems, Enterprise

Architecture, Modeling, Web services, Autonomic computing.

Driss Chenouni

Received the Ph.D. degree in physics from the University of Montpellier II, France, in 1989, and the State Doctor’s degree from the

University of Fes, Morocco, in 1996.

He is currently a member of Laboratory of Information Science and Systems LSIS, at (E.N.S.A), and a Director of the Ecole Normale

Supérieure at Sidi Mohammed Ben Abdellah University (USMBA), Fez, Morocco. His current research interests include Multi-Agent

systems, Enterprise Architecture, Modeling, Web services, Autonomic computing.

Bouchaïb Bounabat

PhD in Computer Sciences. Professor in ENSIAS, (National Higher School for Computer Science and System analysis), Rabat, Morocco.

Responsible of "Computer Engineering" Formation and Research Unit in ENSIAS, Regional Editor of Journal of Computing and

Applications, International Expert in ICT Strategies and E-Government to several international organizations, Member of the board of

Internet Society - Moroccan Chapter.

