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Abstract 

With the combination of theoretical achievements related to parameters study on phase-space reconstruction and short-term load 
forecasting of electric system in physics. The short-term load forecasting of electric power parameter optimization based on phase-
space reconstruction theory is put forward, and through theoretical and simulation researches and qualitative analysis, the impact of 
each parameter on the precision of the power load forecast is obtained and forecasting steps of this method are summarized in this 
paper. According to the optimized parameters, the prediction is conducted to load, and as a result, the accuracy is improved greatly 
when compare forecasting results to immediate prediction. A load example is forecasted by using parametric optimization prediction 
method, and the result shows that parametric optimization prediction method improves the accuracy of load prediction to some 
extent. 
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1 Introduction 

The load predication of the power system is to analyze the 

influence factor according to the historical data of the load; 

and then the predication model is set up according to the 

rules of the factor to reach the purpose [1-3] of predicating 

the future load. However, the reason that power system 

guarantee is ineffective is that the supply plan is not 

accurate and the starting and stopping arrangement of the 

unit are unreasonable; and the problem can be solved to 

predicate the future short-term load accurately [4-7]. 

Thereof, it is very important to improve and enhance the 

effect of short-term load predication. 

We can learn from the phase-space reconstruction 

theory that two parameters, namely embedded dimension 

and delay time, should be determined according to Takens 

theory if we would like to reconstruct time series of a one-

dimensional power load into a multi-dimensional phase 

space, which are of crucial importance in the phase-space 

reconstruction. Meanwhile, the selection of the number of 

vectors close to the central point also has certain influence 

on the precision of the power load forecasting during the 

power load forecasting. 

Based on the above analysis, this paper studies on the 

three parameters, namely embedded dimension, delay time 

and vectors close to the central point, hoping that the 

impact of these three parameters on the forecast precision 

and their implicit rules could be obtained through study 

and experiment, then the three parameters are optimized 

according to these rules, and finally, the load forecasting is 

carried out based on the optimized parameters.  

2 Chaos identification of time sequence and solving of 
parameter 

Before predicating the load, the load data time sequence is 
judged whether to be chaos sequence or not. 

The load data in 2011 of some region is taken as the 
sample to carry out the simulation test study of the para-
meter optimization value. 3,000 hours of load data is selec-
ted to predicate the short-term load of 24 hours; and the 
unit of all load data is milliwatt, illustrated in Figure 1. 

 

FIGURE 1 Load curve figure of some region in 2011 
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Firstly, the time sequence of the load data is subjected 
to chaos identification. The simple and common Lyapunov 
index method is adopted to identify the time sequence of 
the load. The maximum Lyapunov index is calculated by 
small-data method [8,9]. 

The spectrum analysis diagram of which the maximum 
discrete stepping time is equal to 20 and 30 and the 
maximum Lyapunov index diagram are given below, 
illustrated in Figure 2 and Figure 3: 

 

FIGURE 2 The Lyapunov index equal to 0.4086 by the biggest stepping 
time equal to 20 and fitting step length equal to 3 

 

FIGURE 3 The Lyapunov index equal to 0.0709 by the biggest stepping 

time equal to 30 and fitting step length equal to 3 

It can be known from the above experiment that the 
maximum Lyapunov index of the load time sequence is 
positive under different stepping time and matching step 
lengths, namely 0 , so it can draw a conclusion that the 
time sequence of the power load is chaos; and it can be 
predicated and researched by the chaos theory. 

3 Access of delay time   

After the chaos attribute of the power load time sequence is 
tested, the delay time   of the first parameter affecting the 
phase space reconstruction is solved. The delay time   is 
solved by the mutual information method. 

It can be known from the mutual information that it can 
be used as the time delay   of phase space reconstruction 
when the mutual information reaches the minimum delay 
for the first time; and we can obtain the delay time n =6 
from the Figure 4 and Figure 5. 

 

FIGURE 4 Mutual information method for delay time 

 

FIGURE 5 The partial enlargement diagram curve use mutual  

information for delay time 

In order to study on the impact of parameters' delay time 
on the precision of load forecasting, the embedded 
dimension can be kept as m , and the number of vectors 
close to the central point can be lm  . The optimal delay 
time   is searched by changing the delay time   and based 
on the changing curve of mean absolute error (MAE) of 
predict outcomes. In addition, some rules are found through 
a large number of numerical tests on the impact of changes 
of the delay time of different parameters on the precision of 
load forecasting. We will take m =14, 1k  as an example 
to show the result changes of load forecasting as the delay 
time   keeps changing. The details are as follows: 

TABLE 1  Different delay time and average absolute error 

  MAE    MAE    MAE  

0 0.1343 20 0.1024 40 0.1045 

1 0.0349 21 0.1208 41 0.1121 

2 0.1006 22 0.0963 42 0.1052 

3 0.1158 23 0.1357 43 0.1081 

4 0.0989 24 0.0291 44 0.1045 

5 0.1118 25 0.0541 45 0.1175 

6 0.0991 26 0.0933 46 0.1026 

7 0.1160 27 0.1163 47 0.1430 

8 0.1078 28 0.1000 48 0.0269 

9 0.1075 29 0.1200 49 0.0616 

10 0.1018 30 0.0946 50 0.0947 

11 0.1008 31 0.1104 51 0.1208 

12 0.0635 32 0.1044 52 0.0988 

13 0.1048 33 0.1066 53 0.1158 

14 0.1081 34 0.1039 54 0.0938 

15 0.1076 35 0.0942 55 0.1091 

16 0.1088 36 0.0556 56 0.1128 

17 0.1059 37 0.0987 57 0.1102 

18 0.0991 38 0.0962 58 0.1029 

19 0.1105 39 0.1040 59 0.0967 
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FIGURE 6 The relation curves of delay time   and MAE 

It can be seen from Table 1 and Figure 6 that, the 

mean absolute error ( MAE ) fluctuates significantly as the 

delay time changes and has certain rules to follow. 

Therefore, the following conclusions can be drawn from 

the above numerical test results: 

1.  The selection of delay time   has a significant impact 

on the precision of load forecasting, and the predicted 

data and forecast error fluctuates significantly by 

changing the value of delay time  . 

2.  When ,...)3,2,1(,6   n  and the mean 

absolute error ( MAE ) closed to it are significantly 

lower, the forecast precision is significantly higher. 

3.  When a double cycle exists in the curve of mean 

absolute error ( MAE ), there is cycle 2 n  (12 herein) 

and cycle 4 n  (24 herein). 

4.  A multiple of   and values closed to it can be tested 

constantly during the parameter optimization. 

5.  The forecast precision doesn't rank the highest when 

6n   , therefore, it is possible and necessary to 

optimize the value of  . 

3 Determination of embedding dimension m 

After obtaining the delay time  , we continue to deter-

mine the second parameter and embedding dimension 

affecting the phase space reconstruction and the predi-

cation precision; and G-P method is adopted here. 

The specific steps are as follows [10-15]: 

1)  The parameters known in the previous computational 

process of phase-space reconstruction: based on the 

total number of N, time series }......,,{ 321 NYYYY ; delay 

time n  and embedded dimension nm . 

2)  A new matrix P  of Mm  is obtained by carrying 

out a phase-space reconstruction to time series 

according to n  and nm , that is, nmNM )1(  . 

(1) { , , ,..., }
,1 , 1 ,2 1 ,( 1) 1

(2) { , , ,..., }
,2 , 2 ,2 2 ,( 1) 2

.......

( ) { , , ,..., }
, , ,2 ,( 1)

P x x x x
i i d i d i m d

P x x x x
i i d i d i m d

P M x x x x
i M i d M i d M i m d M

  

  

  


   


   


     

3) The maximum difference 
ijd  is calculated by 

subtracting the corresponding items of components in 

every two vectors ( , )i j in P ; 

4)  Find the maximum value of ijd  and record it as 

dmax ; the minimum value and record it as dmin ; 

5)  Set the proper step k  so that r  can change based on 

k  growth rate between dmin  and dmax . 

6)  Carry out the following calculations for each )(ir : 

For every two vectors P , subtract corresponding 

items of components to find the maximum absolute 

value and record it as d ;Make statistics of the 

number of d ≤ r , and record them as sita , calculate 

sita
MM

C
)1(

2


 ; 

Solve the logarithms for C  and r  and record them as 

CiC 2log)(ln   and rir 2log)(ln   respectively. 

7)  Construct a drawing with rln  as X-axis and Cln  as 

Y-axis, and calculate the slope, namely the relevant 

dimension, in this drawing. 

 
FIGURE 7 Correlation dimension embedding dimension figure 

 

TABLE 2  Corresponding relation between embedding dimension and 
correlation dimension of attractor 

Embedding space dimension 

( im ) 

Correlation dimension of attractor 

)( imd  

1 0 

2 0.993 

3 1.981 

4 3.054 

5 3.992 

6 5.494 

7 5.791 

8 6.270 

9 6.462 

10 6.415 

 
It can be known form G-P algorithm that embedding 

dimension 12 mm   is added continuously and the calcu-
lation is repeated until the corresponding dimension esti-
mated value )( imd  is unchanged in a certain error range 
along the increase of m  no longer; at this time, the obtai-
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ned d  is the correlation dimension of attractor. It can be 
known from the curve Figure 7 and Table 2 that the corre-
lation dimension is steady around 6.47; and d =6.47. 
Meanwhile, embedding dimension 12  dm  according to 
the Takens theorem; so the embedding dimension of power 
load time sequence is nm =14. 

4 Selection of neighboring vector m+l of central point 

A large number of experiments show that the space dis-
tance between each point in the space and the central point 
is a very important parameter; the predication accuracy 
depends on the points near the central point. If the distance 
between the adjacent point and the central point is intro-
duced to the predication process as the matching para-
meter, the predication precision can be improved to some 
extent and remove the noise. The selection of the neigh-
boring vectors of the central point has influence on the 
predication; and to find out the best parameter is of great 
significance to improve the predication precision. 

It can be known from the above section that m  meta-
regression adopts at least m5  data, so that the regression 
result is reliable. The number of the neighboring vector is 
above m5 , namely, in kml  , 4k . When the predica-
tion is carried out by the weighting one-rank local-region 
method, 1k . 

When delay time and embedded dimension keep 
unchanged, change the number of vectors closed to the 
center point, namely changing the value of k , then calcu-
late the mean absolute error ( MAE ) based on the data for 
load forecasting, and finally get the following two conclu-
sions independent of examples through a large number of 
simulation tests and comparative analysis: 
1.  It can be seen from the mean absolute error )(MAE  

based on the data for load forecasting that the 
selection of the number of adjacent points closed to 
the center point doesn't much affect the precision of 
load forecasting.  

2.  In some cases, changing the number of proximal 
points closed to the center point doesn't affect the 
predict results.  

Take 14m , 6  for example an example to 
illustrate it. Below are changes of the mean absolute error (
MAE ) when the value of k  keeps changing. 

TABLE 3  The average absolute error MAE by k value change 

k  Average absolute error MAE  

0, 1, 2, 3 0.0991 

4, 5,…,39 0.0990 

40, 41,…, 86 0.0985 

87, 88,…, 127 0.0981 

128 0.0987 

129, 130, …, 137 0.0975 

138, 139,…., 149 0.0976 

150,151,…,159 0.0981 

160,161,…183 0.0987 

184,…, 187 0.0989 

188 0.1016 

 

It can be seen from Table 3 that, when the value of k  
changes, the mean absolute error ( MAE ) changes very 
little and in some certain intervals the change of k value 
cannot affect the predict result, as shown in Figure 8. 

 

 

FIGURE8 The curves graph of average absolute error by k value change 

5 Simulation test research on optimization value of 

load predication parameter 

 
Numerical tests are carried out to the three parameters, 
namely embedded dimension, delay time and number of 
adjacent points closed to center point, of load forecasting 
based on chaos theory. And it can be seen from the conclu-
sions obtained from the above numerical tests that, the 
embedded dimension and delay time have a significant 
impact on the precision of load forecasting data, while the 
impact of number of adjacent points closed to center point 
on the precision of load forecasting data is relatively small. 
Meanwhile, if the delay time   keep changing when the 
embedded dimension and the number of adjacent points 
closed to center point remain unchanged, the precision of 
load forecasting near ,...)3,2,1(,6   n  is signi-
ficantly higher. If the embedded dimension m  keep 
changing when the delay time   and the number of 
adjacent points closed to center point remain unchanged, 
the precision of load forecasting of m =3 is significantly 
higher than that of other values. 

Based on the above numerical tests and analytical con-
clusions, the combination of two parameters should be 
firstly tested when optimizing selection of the combination 
of the three parameters. After the optimal combination of 
these two parameters is found, the combination of the three 
parameters can be optimized on that basis; meanwhile, 
various parameters have different impacts on the precision 
of load forecasting, therefore, a prior consideration should 
be given to use the parameter, which has a big effect for 
the combinatorial test during the selection of parameter 
combination. 

During the numerical test, the number of adjacent 
points closed to center point remains unchanged. Firstly, 
test the optimizing combination of delay time  and 
embedded dimension m , and when =3 the precision of 
load forecasting is significantly higher, therefore, the test 
can be firstly started from the combination of ( m , )=(3, 
 ), while the value of   should be taken as close as 
possible to ,...)3,2,1(,6   n . Meanwhile, for 
easy comparison, in addition to the error rE  and mean 
absolute error MAE , the author sets up the number of a 
comparative item %3rE  and lists the maximum error 

maxE  for the calculation and analysis of the prediction 
error indicators. 
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In order to facilitate the analysis and conclusion, above 
combinations of numerical tests that meet the conditions of 

%5max E , %3rE and the number ≥ 11 and combina-
tions with mean absolute error MAE 0.050 are selected 
below, totally 62 pairs, accounting for about 1.69% of the 
total number of combinations, as shown in Table 4. 

TABLE 4  The parameter combination ( , )m   when prediction precision 
is higher 

（ m ,  ） 
Maximum 

error 
maxE  

Average absolute 

error MAE  
%3rE  

（2, 1） 5.43% 0.0217 19 

（2, 25） 9.66% 0.0299 12 

（3, 1） 5.34% 0.0209 17 

（3, 2） 8.01% 0.0285 14 

（3, 5） 8.82% 0.0348 13 

（3, 6） 5.02% 0.0210 17 

（3, 12） 8.64% 0.0231 17 

（3, 24） 9.81% 0.0336 14 

（4, 12） 9.61% 0.0277 15 

（4, 36） 6.84% 0.0292 14 

（5, 1） 9.91% 0.0351 11 

（5, 12） 7.87% 0.0332 13 

（5, 24） 7.06% 0.0274 13 

（5, 48） 8.59% 0.0254 17 

（6, 1） 9.50% 0.0301 17 

（6, 24） 9.92% 0.0307 14 

（6, 48） 7.63% 0.0224 17 

（7, 48） 6.23% 0.0202 19 

（8, 24） 6.69% 0.0228 18 

（8, 36） 4.51% 0.0217 15 

（8, 48） 8.74% 0.0312 13 

（9, 24） 5.83% 0.0229 17 

（9, 36） 6.51% 0.0288 13 

（9, 48） 9.22% 0.0355 13 

（10, 24） 5.97% 0.0254 15 

（10. 48） 9.55% 0.0330 13 

（11, 24） 8.25% 0.0245 15 

（11, 36） 8.63% 0.0342 12 

（11, 48） 9.51% 0.0287 13 

（12, 1） 9.33% 0.0403 11 

（12, 24） 8.41% 0.0252 15 

（12, 48） 9.64% 0.0304 14 

（13, 24） 7.83% 0.0250 16 

（13, 48） 8.92% 0.0264 16 

（14, 1） 9.57% 0.0349 13 

（14, 24） 9.10% 0.0291 14 

（14, 48） 8.88% 0.0269 14 

（15, 24） 7.30% 0.0228 19 

（15, 48） 6.58% 0.0263 16 

（16, 24） 8.18% 0.0257 16 

（16, 48） 8.27% 0.0300 13 

（17, 24） 7.19% 0.0283 14 

（17, 48） 6.67% 0.0297 14 

（18, 24） 9.17% 0.0312 14 

（18, 48） 5.93% 0.0292 13 

（19, 24） 7.60% 0.0281 16 

（19, 48） 7.59% 0.0364 11 

（20, 24） 7.85% 0.0281 13 

（20, 48） 7.37% 0.0351 11 

（21, 24） 7.81% 0.0276 15 

（22, 24） 5.79% 0.0261 17 

（23, 24） 8.15% 0.0253 16 

（23, 48） 6.88% 0.0314 14 

（24, 24） 7.70% 0.0237 19 

（24, 48） 7.52% 0.0348 11 

（25, 24） 7.64% 0.0263 18 

（26, 24） 6.82% 0.0255 14 

（27, 24） 6.56% 0.0257 16 

（28, 24） 6.78% 0.0324 12 

（29, 24） 7.83% 0.0298 12 

（30, 24） 8.15% 0.0294 13 

（31, 24） 6.67% 0.0307 13 

The distribution of embedded dimension and mean 
absolute error, the optimization combination relations bet-
ween delay time and mean absolute error and between 
embedded dimension and delay time are analyzed and 
compared below. 

  
FIGURE 9 The relationship chart m and MAE  when forecasting 4 

  

  
FIGURE 10 The relationship chart  and MAE  when forecasting 

precision is higher 

 
FIGURE 11 The parameter combination ( m ,  ) when prediction 

precision is higher 
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FIGURE 12 The relationships between m  and the number of %3E  

 
 

FIGURE 13 The relationships between   and the number of %3E  

It can be seen from Table 4 and Figures 9-13, com-
binations with delay times of  =24 and  =48 are in the 
majority in the optimized combinations, while for the 
embedded dimension m, combinations with higher forecast 
precision focus on 28,...,1m . And the following con-
clusions independent of examples can be drawn through a 
good deal of numerical calculation and experimental tests: 
1.  The combination with higher predication precision, 

namely the embedding dimension m in the optimal 
combination focuses in the range of 

},20|{ Zmmmm n  ; and the parameter 
combination with high precision is obtained in the 
range. 

2.  The higher predication precision can be obtained 
around the embedding dimension m =3. 

3.  The optimal combination with higher predication 
precision is obtained in  = ,...)3,2,1(  n . 

4.  Relative to the number of adjacent vectors closed to 
center point, the selection of embedded dimension and 
delay time has a significant impact on the forecast 
precision. Therefore, the optimization of these two 
parameters must be carried out in order to improve the 
precision of load forecasting.  
It can be obtained from the research on the parameter 

combination of ( m , ) that: the embedded dimension and 
delay time gained from a short-term load forecast accor-
ding to chaos theory aren't the optimal parameters, and the 
predicted load precision isn't ideal. In addition, it can be 
learnt from the research on the number of adjacent vectors 

closed to center point, embedded dimension and delay time 
above that, the selection of embedded dimension and delay 
time has a great impact on the precision of load 
forecasting, while the selection of the impact of the number 
of adjacent vectors closed to center point is relatively 
smaller. The parameter combinations are very critical for 
the precision of load forecasting.  

In this example, when the embedded dimension 14m
. The precision is relatively higher, and the proportion of 
the combination reaches the maximum one, especially 
when m =3, 5; for the delay time  , the one calculated by 
using chaos theory is n =6, the forecast precision is 
relatively higher when  = 2,1,0,6 nn , and the 
proportion of the combination reaches the maximum one, 
especially when  =24, 48. In the previous section, 
numerical simulation tests are carried out to analyze the 
impact of the combination between embedded dimension 
and delay time on the forecast precision, Results of this 
numerical simulation are given in the following:  

Take m =3,   for an example: 

TABLE 5  The predict precision is the highest under combined 
parameters（3, 12, k）by k equals to 944 

（3, 12, k ） 

k  
Maximum 

error 
maxE  

Average 

absolute 

error MAE  

Number 

of

%3E  

k =1 8.64% 0.0231 17 

k =160 7.90% 0.0256 17 

k =944 7.30% 0.0225 18 

 

TABLE 6  The predict precision is the highest under combined 
parameters（3, 12, k）when k equals to 2 

（20, 24, k ） 

k  
Maximum 

error 
maxE  

Average 

absolute 

error MAE  

Number 

of
%3E  

k =0 7.85% 0.0282 13 

k =1 7.06% 0.0268 15 

k =2 6.09% 0.0263 16 

 
It can be seen from Table 5 that, when the value of k

keeps changing, the mean absolute error changes very little 
and even remains unchanged in some intervals sometimes, 
and the same conclusion can be drawn from Table 6. 
Therefore, changing the value of k  can affect the forecast 
precision slightly; similarly, to optimize the number of 
adjacent vectors of center point can also improve the 
forecast precision to some extent. 

The following conclusions for the three parameter com-
binations independent of examples can be drawn through a 
good deal of numerical calculation and experimental tests: 

1.  In the combination of parameter ( m , , k ), m  and   

have great influence on the precision of the 

predication result; k  has little influence on the 

precision of the predication result; and in the value 

test with changed k  value, the predication data 

change is gentle. 

2.  When the parameter combination ( m , ) reaches the 

optimization, the predication precision can be 

improved by changing k  value. 
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6 Conclusion 

Since the adding-weight one-rank local-region method is a 
forecasting method with the best predictive effect in the 
present chaos theory, and in view of current situation that 
there are many researches on the load forecasting method 
but few researches on the parameter optimization, this 
paper puts forward a short-term load forecasting of electric 

power parameter optimization based on the phase-space 
reconstruction theory, and through theoretical and simu-
lation researches and qualitative analysis, the impact of 
each parameter on the precision of load forecasting is 
obtained and short-term load forecasting methods for 
power systems are studied and improved. 
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