

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 94-101 Tang Weidong, Wu Jinzhao, Liu Meiling

94
Computer and Information Technologies

Step semantics and action refinement in event structures

Weidong Tang 1, 2, 3, Jinzhao Wu 1, 2, 3*, Meiling Liu 1, 4
1School of Information Science and Engineering, Guangxi University for Nationalities, Nanning 530006, China

2Chengdu Institute of Computer Applications, Chinese Academy of Sciences, Chengdu 610041, China

3Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Nanning 530006, China

4Science Computing and Intelligent Information Processing of GuangXi higher education key laboratory, Nanning 530023, China

Received 5 May 2014, www.tsi.lv

Abstract

An event structure acts as a denotational semantic model of concurrent systems. Action refinement is an essential operation in the

design of concurrent systems. However, there exists an important problem about preserving equivalence under action refinement. If

two processes are equivalent with each other, we hope that they still can preserve equivalence after action refinement. In linear time

equivalence and branching time equivalence spectrum, step equivalences, which include step trace equivalence and step bisimulation

equivalence are not preserved under action refinement [17]. In this paper, we define a class of concurrent processes with specific

properties and put forward the concept of clustered action transition, which ensures that step equivalences are able to preserve under
action refinement.

Keywords: event structure, action refinement, concurrency, step equivalence, clustered equivalence

* Corresponding author e-mail: himrwujz@126.com

1 Introduction

In order to model concurrent systems, we hope to have

formal method for hierarchical structure. Action

refinement is the core operation of the hierarchical

method, which interprets an action in higher abstract

layer with a process in lower layer, hence reduces the

level of abstraction and eventually reaches its

implementation layer. In the development course from

top to bottom of concurrent system, we must first build

models, which depict the system with description

language of top layer; subsequently, according to these

descriptions, we complete its implementation. This

course often requires equivalence notion to verify the

correctness of implementation of system. More

concretely, assuming that P represents the descriptions of

system and Q represents its implementation, if P is

equivalent with Q (expressed as P Q), then this shows

that Q is correct. In development, the description P of a

system can be refined layer-by-layer; accordingly, its

implementation Q can be converted from framework

into code or electronic components. Only the description

and its implementation at all levels are required to

maintain equivalence so as to ensure correctness of its

implementation. This leads to an important question what

kind of equivalence is maintained under action

refinement, that is, if two concurrent systems are

equivalent with each other, we hope that they still can

preserve equivalence after action refinement.

Vogler [31, 33] first raised the basic thought of

preserving equivalence under action refinement. Czaja,

Van Glabbeek and Goltz [34] demonstrated that if

interleaving bisimulation equivalence doesn’t produce

choice operations or action self-concurrences after

actions are refined then it can preserve equivalence under

action refinement, but interleaving trace equivalence still

cannot preserve .Goltz and Wehrheim [30] proved that

history preserving bisimulation is consistent with global

causal dependencies, but they did not further discuss

about the problem how to preserve equivalence under

action refinement, and did not discuss that there are other

situations under environment of action independencies.

At last, in paper [17] Van Glabbeek and Goltz

summarized that research results of action refinement in

recent ten years, gave a detailed explanation for

preserving equivalence problem under action refinement,

and proved that interleaving equivalence cannot preserve

under action refinement in general, but did not discussed

further. Moreover, no work further discusses preserving

problem under action refinement of step trace

equivalence and step bisimulation equivalence. In this

paper, we define a class of concurrent processes with

specific properties and put forward the concept of

clustered action transition, which ensures that step

equivalences are able to preserve under action refinement

in the absence of constraints.

2 Event structures and action refinement

Assume that Act be a set of actions.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 94-101 Tang Weidong, Wu Jinzhao, Liu Meiling

95
Computer and Information Technologies

Definition 2.1 A event structure is a 5-tuple

 , , #, ,E l  , where

E is the set of events;

E E  is irreflexive partial relation, and satisfy the

rule of finite causes that  : 1 1e E e E e e    is finite;

In addition, its inverse “<” is expressed as “>”;

E E  is irreflexive and finite conflicting relation,

and satisfy the rule of inheriting of conflict that

1, 2, 3 : 1 2e e e E e e    1# 3 2# 3e e e e ;

E E   is irreflexive concurrent relation,

altogether with < and # to satisfy the principle of partition

that # E E    ,

1 2e e   1 2 1 2 2 1 1# 2e e e e e e e e       ;

:l E Act is a label function of actions.

In this paper, let stand for the set of all event

structures.

Definition 2.2 Let ,  . A relation between

and is called isomorphic (expressed as ) iff

there exists an bijection between their sets and preserves

corresponding relations with , #,   and same

corresponding labels.

 Unless specified, we do not discriminate isomorphic

event structures.

The behaviour of event structure is depicted with

configuration which is the set of events with specific

properties. Configurations are considered as possible

states of system. The following is its definition.

Definition 2.3 Let X be a subset of the set E of all

events in event structure .

(1) X is left closed iff

1, : 1 1e e E e X e e e X       ;

(2)X is conflicted-free iff X is conflicted-free;

(3)X is a configuration iff X is not only left closed but

also conflicted-free.

Here, let  C represent the set of all configurations

in event structure .

A configuration X  ()X C is called successfully

terminated configuration iff

: 1 : 1#e E e X e X e e     .

The event structure is also often represented with

graph, where ,  stands for casual relation and

immediately conflict relation in event structure

respectively, inheriting conflict relation, which is not

considered and independent relation is not explicitly

expressed.

Example 2.1 The system    ; ;a b c b d  ,

executing either ,a b concurrently or ,c b and d

sequentially, can be described by the event structure with

events e1,e2,e3,e4,e5 with (1) , (3)l e a l e c  ,

(2) (4)l e l e b  , (5)l e d , where 1 2, 3 4 5e e e e e   ,

each of e1,e2 is in conflict with each of e3,e4,e5. This

event structure is expressed as below.

Its configurations are    , 1 , 2e e ,

       1, 2 , 3 , 3, 4 , 3, 4, 5e e e e e e e e , where

   1, 2 , 3, 4, 5e e e e e are terminated configurations.

Basic thought of action refinement is: replace an

action in higher layer with a process in lower layer, do it

layer by layer, until get detailed design or implementation

of system.

Definition 2.4 A function  :ref Act E   is

called a refinement function of event structure, iff

: ()a Act ref a  is not empty, finite and conflict-free.

Let  .  ref is an event structure defined as

follows:

     () , ,ref ref l e
E e e e E e E    , (1)

     

 (1)

1, 1 2, 2 1

2 or 1 2 1 2

ref

ref l e

e e e e iff e

e e e e e

  

   
, (2)

     1, 1 # 2, 2 1# 2
ref

e e e e iff e e  , (3)

     

 (1)

1, 1 2, 2 1 2 or

1 2 1 2

ref

ref l e

e e e e iff e e

e e e e

  

   
, (4)

     ()
, ()

ref ref l e
l e e l e  . (5)

Example 2.2 Continue with Example 2.1. Assuming

that () (1; 2) 3ref b b b b  , the event structure after action

refinement is expressed as Figure 2.2.

FIGURE 1 The event structure

e2

e1

e4 e5 e3

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 94-101 Tang Weidong, Wu Jinzhao, Liu Meiling

96
Computer and Information Technologies

In the process of action refinement, each event e

labelled by b is replaced by a disjoint copy,
e

, of

()ref b , i.e. the event e2 is replaced by (e22;e23)#e21

and the event e4 is replaced by (e41;e42)#e43 [17]. The

causality and conflict structure is inherited from : all

events which were casually before e will be casually

before all events of
e

, every event, which casually

followed e will casually follow all events of
e
, and all

events in conflict with e will be in conflict with all the

events of all events which were casually before e will be

casually before all events of
e
.

3 Step equivalences

Step equivalences embody step trace equivalence and

step bisimulation equivalence. To begin with, we give the

definitions of single action transition and step action

transition by comparison.

Definition 3.1 Let  . A transition relation
aX X  is called single action transition iff

 , , ,a Act X X C X X    , and

: , ()e E X X e l e a     .

Here, aX X  denotes that the state expressed

by Configuration X turns into the one expressed by

Configuration 'X after performing single action a in

event structure  .

Definition 3.2 Let  . A transition AX X 

is called a step action transition iff ActA N i.e., A is

multiple set in Act,  ,X X C ,

,X X X X G    , to make X, : ed e G d    and

 l G A , where   Actl G N is given by

      l G a e G l e a   .

Here, AX X  means that in event structure ,

after independently executing all actions of set A, the

state expressed by configuration X is changed into the

one expressed by configuration X  .

According to the above-mentioned definitions,

obviously there is following proposition.

Proposition 3.1 A single action transition is also a

step action transition.

Proof is omitted.

Then, we define trace and interleaving trace

equivalence, step trace and step trace equivalence by

comparison.

Definition 3.3 Let  . A word

1 *na a Act  is called a trace of event structure

 iff  0 , , :nX X C 
0X  and

i-1X , 1, ,ia

iX i n  .

Here, trs   represents the set of all traces in event

structure .

Definition 3.4 Let ,  . A relation between

and is called interleaving trace equivalence (expressed

as
it) iff trs  =trs   .

Definition 3.5 Let  . A sequence

  1 i 1, ,Act

nA A A N i n   is called a step

trace of event structure iff

 0 0, , :nX X C X   and

i-1X , 1, ,iA

iX i n  is a step action transition.

Here, steptrs   represents the set of all step traces

of event structure .

Definition 3.6 Let ,  . A relation between

and is called step trace equivalence (expressed as

st) iff steptrs  =steptrs   .

Furthermore, we define interleaving bisimulation

equivalence and step bisimulation equivalence by

comparison.

Definition 3.7 Let ,  . A relation

   R C C  is called a interleaving bisimulation

between and iff  , R   and if  ,X Y R

then

, :aX X a Act Y   

  ,aY Y X Y R     ,

, :aY Y a Act X   

  ,aX X X Y R     .

A relation between and is called interleaving

bisimulation equivalence (expressed as
ib ) iff

there exists a interleaving bisimulation between them.

e

4

e

2

FIGURE 2 The event structure after action

refinement

e2

1

e

1

e

5
e

3

e

4

2

e

4

3

e

4

1

e2

3

e2

2

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 94-101 Tang Weidong, Wu Jinzhao, Liu Meiling

97
Computer and Information Technologies

Definition 3.8 Let ,  . A relation

   R C C  is called a step bisimulation between

 and iff  , R   and if  ,X Y R then

, :A ActX X A N Y   

  ,AY Y X Y R     ;

, :A ActY Y A N X   

  ,AX X X Y R     .

A relation between and is called step

bisimulation equivalence (expressed as
sb) iff

there exists a step bisimulation between them.

According to the definitions of trace equivalence and

bisimulation equivalence, obviously there are following

two propositions.

Proposition 3.2
ib it   .

Proposition 3.3
sb st   .

The paper [17] has showed that step bisimulation

equivalence and step trace equivalence cannot preserve

under action refinement. The following proposition

shows that if no independency exists in event structure

then step equivalences (include step trace equivalence

and step bisimulation equivalence) are able to preserve

under action refinement.

Proposition 3.4 Let ,  , let ref be a refinement

function. If independency between events in an event

structure is such that =    then

(1)
st stref() ref()   .

(2)
sb sbref() ref()   .

Proof (1) Because =    , any transition in

event structures and is single action transition.

Also, by proposition 3.1,
st it   . By

proposition 3.5(1) [31],
it itref() ref()   ,

namely, trs(ref()) trs(ref()) . In and , every

action label is exactly the same and is refined in the same

way; moreover, =    . Hence, there exist same

multiple action sets where actions are just concurrent in

ref() and ref() . So we arrive at the conclusion that

steptrs(ref()) trs(ref())step , namely

stref() ref() .

Proof (2) Because =    , any transition in

event structures and is single action transition.

Also, by proposition 3.1,
sb ib   . By

proposition 3.5(2) [31], ib ibref() ref()   .

In and , every action label is exactly the same and

is refined in the same way; moreover, =    .

Hence, there exist same multiple action sets where

actions are all concurrent and branching time properties

of corresponding action are just the same in ref() and

ref() . So we arrive at the conclusion that

ib sbref() ref() ref() ref()   .

4 Clustered action transition

We introduce new one class action transition, where A is

multiple set in action set Act and all actions within A

independently perform with each other. We call this

multiple set A as a clustered action and call this class

transitions as clustered action transitions that is in fact

one kind of special step action transition. With clustered

action transitions, we construct two new types of

equivalence.

Definition 4.1 Let  . A transition AX X 

is called a clustered action transition iff ActA N (i.e., A

is multiple set in Act),

 , , ,X X C X X X X G      , the events in set G

satisfy:

(1) entire independency of causes:

    X 1 1, : e ed e G d e E e e      

   2 2 de E e d G   and ()l G A ;

(2) same causality:

 1 2 1 2 3 1 3\ , : :e E G e G e e e G e e       

 1 2 3 1 3:e e e G e e     ;

(3) same conflict relation:

 1 2 1 2 3 1 3E \ , : # : #e G e G e e e G e e      .

Here,   Actl G N results from

   () ()l G a e G l e a   .

Clustered action transition AX X  represents

that after independently executing all actions of set A, the

state expressed by configuration X is changed into the

one expressed by configuration X  in event structure

.

Example 4.1 In a simple process

   ;a b c d f  , its actions names corresponds to

events , , , a b c de e e e and fe respectively. Assume that

event structure model of process K is , figure 4.1

describes all single action transitions and configurations

of , whereas figure 4.2 describes its all clustered

action transitions and configurations. Find from

comparison of two figures that when arriving at

configuration  , , , a b c de e e e , there exists 10 possible

transitions in figure 4.1, however there exists only 2

clustered action transitions in figure 4.2 .

This example shows that clustered action transitions

can simplify the system expressed by single action

transitions. If applying this thought to simplify systems, a

lot of good results may acquire.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 94-101 Tang Weidong, Wu Jinzhao, Liu Meiling

98
Computer and Information Technologies

FIGURE 3 Single action transitions in a event structure

FIGURE 4 Clustered action transitions in a event structure

Definition 4.2 suppose that e is an event in event

structure . Independency set of cause on e  e ,

including itself of e , is defined as

     1 1 ee e E e e    .

In order to study the follow-up problems, we give a

proposition in advance.

Proposition 4.1 Let  . If all transitions in

are clustered action transitions then

(1)   :Ad E X X     () ,d G  where

ActA N ,  , , ,X X C X X X X G      and

 l G A ;

(2)   : (),AX X d E G d     where

ActA N ,  , , ,X X C X X X X G      and

 l G A ;

(3)  
e E

e E


 ;

(4)
1 2 1 2, :e e E e e   

 1 2 1 2 e () ()e e e     .

Proof Conclusions (1), (2) and (3) is very easy to

reach, omitted here. Only give proof of (4). If

1 2() ()e e   then
1 2() ()e e e   . By definition

4.1, we obtain
1 2() () ()e e e    , consequently obtain

 1 e2 or e1=e2either e  . This contradict with

 1 2 1 2 ee e e   . Accordingly, arrive at the

conclusion that

1 2 1 2, :e e E e e     1 2 1 2 e () ()e e e     .

The above proposition shows: If all transitions in an

event structure are clustered action transitions then all

independent actions involved in a clustered action

transition are seen as a “big” action, its corresponding

events can be thought of as a “big” event. Hence, not only

no independency between events exists in this event

structure but also independency sets of cause divide set of

events into different parts, which induces an equivalence

relation in set of events of this event structure.

Here, clustered action transition is a special kind of

step transition. The fact that there exist entire

independency of cause in a clustered action transition

means that an action only belongs to a certain clustered

action and is not shared with other clustered action. For

example, in the process  ;a b c , action c may belong to

two clustered actions i.e.  ,a c and  ,b c , hence the

event structure corresponding to this process cannot

satisfy the requirement of entire independency of cause.

Thus, the transitions here are not clustered action

transitions but general step action transitions. This

exactly is the reason why process  ;a b c is step trace

equivalence with process    ; ;a c b a b c , but step

trace equivalence cannot hold under action refinement.

On the contrary, independent events in clustered action

transition possess same causal relation and same conflict

relation, so every clustered action can be seen as a “big”

action. These advantages ensure that equivalence based

on clustered action transition can hold under action

refinement. Accordingly, we introduce concept of

clustered action transition equivalence.

Definition 4.3 Let  . A sequence

  1 i 1, ,Act

nA A A N i n   is called a

clustered trace of event structure iff

 0 0, , :nX X C X   and

i-1X , 1, ,iA

iX i n  is a clustered action transition.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 94-101 Tang Weidong, Wu Jinzhao, Liu Meiling

99
Computer and Information Technologies

Here, Clusteredtrs   represents the set of all

clustered traces of event structure .

Subsequently, we define clustered trace equivalence.

Definition 4.4 Let ,  , all transitions in

and be clustered transitions. Let  Clusteredtrs and

 Clusteredtrs be the sets of all clustered traces of ,

 respectively. A relation between and is called

clustered trace equivalence (expressed as
ct) iff

Clusteredtrs  =Clusteredtrs   .

The following propositions show that clustered trace

equivalence is accordance with step trace equivalence in

given conditions.

Proposition 4.2 Let ,  .If all transitions in

event structures and are clustered action

transitions then ct st   .

Proof By definition 3.2 and definition 4.1, we draw

the above conclusion at once.

Proposition 4.3 Let ,  . If all transitions in

event structures and are clustered action

transitions then
ct it   .

Proof By definition 4.1 and proposition 4.1,

, (1, , , 1, , ,)i jA A i n j n i j    in a clustered trace,

then all actions in
iA are independent of those in

jA .

Performing of each action in
iA does not interfere with

those in jA , vice versa. Consequently,

   Clusteredtrs Clusteredtrs     trs trs

, i.e.
ct it   .

Provide that
1 nW A A , where Act

iA N

 (1, ,)i n be a clustered trace, and
iA stand for the

number of elements, then the clustered trace W

corresponds to 1 2! ! !nA A A   general traces. In

example 4.1, the clustered trace   , ,a b c d corresponds

to 4 (namely,    , ! , ! 2! 2! 4a b c d   ) general

traces , , ,abcd abdc bacd badc .

After discussing clustered trace equivalence, we begin

with another new class of equivalence and study whether

they can maintain under action refinement or not. This

class of equivalence is designated clustered bisimulation

equivalence. The following provides for its definition.

Definition 4.5 Let ,  , let all transitions in

and be clustered action transitions. A relation

   R C C  is called a clustered bisimulation

between and iff  , R   and if  ,X Y R

then

,A ActX X A N  

 : ,AY Y Y X Y R       ;

,A ActY Y A N  

 : ,AX X X X Y R       .

A relation between and is called clustered

bisimulation equivalence (expressed as
cb) iff

there exists a clustered bisimulation between them.

Obviously, by definition 4.5, we come to a decision

that
cb ct   .

Proposition 4.4 Let ,  . If all transitions in

event structures and are clustered action

transitions then
cb sb   .

Proof is omitted.

The above proposition shows that clustered

bisimulation equivalence is consistent with step

bisimulation equivalence under certain conditions.

Proposition 4.5 Let ,  . If all transitions in

event structures and are clustered action

transitions then
cb ib   .

Procedure of proof is similar to that of proposition

4.3, omitted here.

5 Preserving of step equivalences

The paper [17] has demonstrated that step equivalence

cannot preserve under action refinement in the general

case. However, proposition 3.4 shows that step

equivalence without concurrency can preserve under

action refinement. This part will extend proposition 3.4

and show that in the presence of concurrency, step

equivalence may preserve under action refinement in

given conditions.

Proposition 5.1 Let ,  , let ref be a refinement

function. If all transitions in event structures and

are clustered action transitions then

(1) ct stref() ref()   ;

(2)
st stref() ref()   .

Proof (1) By proposition 4.2,
ct st   .

By definition 4.1 and proposition 4.3, firstly, each

clustered action transition corresponds to many single

action transitions formed by interleaving performing of

clustered actions; Secondly, when single action is refined,

the corresponding clustered action is refined; Thirdly,

Concurrent actions involved in per clustered action can

be seen as one action, accordingly, their corresponding

events also can be seen as one event. Therefore, by this

treatment, there is not independency of cause in this event

structure. Hence, we derive from proposition 3.4(1) that

ct st stref() ref()     .

(2) By proposition 4.2 and the above derivation

process, we immidiately reach a conclusion that

st stref() ref()   .

This proposition shows that if all transitions in an

event structure are clustered action transitions then step

trace equivalence can hold under action refinement.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 94-101 Tang Weidong, Wu Jinzhao, Liu Meiling

100
Computer and Information Technologies

Subsequently, we discuss the relationship between

clustered bisimulation equivalence and step bisimulation

equivalence under action refinement, as well as how to

preserve step bisimulation equivalence under action

refinement.

Proposition 5.2 Let ,  , let ref be a refinement

function. If all transitions in event structures and

are clustered action transitions then

(1)
cb sbref() ref()   ;

(2)
sb sbref() ref()   .

Proof (1) By proposition 4.4,
ct st   .

By definition 4.1 and proposition 4.5, firstly, each

clustered action transition corresponds to many single

action transitions formed by interleaving performing of

clustered actions; Secondly, when single action is refined,

the corresponding clustered action is refined; Thirdly,

Concurrent actions involved in per clustered action can

be seen as one action, accordingly, their corresponding

events also can be seen as one event. Therefore, by this

treatment, there are not independency of cause in this

event structure. Hence, we derive from propositin 3.4(2)

that cb sb sbref() ref()     .

(2) By proposition 4.4 and the above derivation

process, we immidiately reach a conclusion that

sb sbref() ref()   .

This proposition shows that if all transitions in an

event structure are clustered action transitions then step

bisimulation equivalence can hold under action

refinement.

To sum up, if all transitions in event structures are

clustered action transitions then two kinds of step

equivalences, including step trace equivalence and step

bisimulation equivalence, can hold under action

refinement. Proposition 5.1 and proposition 5.2 extend

proposition 3.4.

6 Results and Discussion

The paper has demonstrated that (1) In event structures

without independency between events, step trace

equivalence and step bisimulation equivalence can

preserve under action refinement; (2) In event structures,

if all transitions are clustered action transitions, then with

clustered trace equivalence between event structures, we

can reach that step trace equivalence can preserve under

action refinement; likewise, with clustered bisimulation

equivalence between event structures, we can reach that

step bisimulation equivalence can preserve under action

refinement.

Therefore, we find a class of concurrent processes

with specific properties, which enable step equivalence to

preserve under action refinement in the absence of

constraint.

Our next work is to introduce the thought of clustered

action transition into model checking so as to deal with

states explosion problem in the process of system

verification.

Acknowledgements

This Work is supported by Grants No. HCIC201306 of

Guangxi HCIC lab Open Fund, the National Natural

Science Foundation of China under Grant No. 11371003,

the Natural Science Foundation of Guangxi under Grant

No. 2011GXNSFA018154 and No.

2012GXNSFGA060003, the Science and Technology

Foundation of Guangxi under Grant No. 10169-1, the

Scientific Research Project No. 201012MS274 from

Guangxi Education Department., and Science Computing

and Intelligent Information Processing of GuangXi higher

education key laboratory No. GXSCIIP201201.

References

[1] Wu J 2001 Action refinement in timed LOTOS Proc. Of ASCM’01,
World Scientific Publ. 183-92

[2] Aceto L, Hennessy M C B 1994 Adding action refinement to a
finite process algebra Information and Computation 115 179-247

[3] Fecher H, Majster-Cederbaum M, Wu J 2002 Action refinement for

probabilistic processes with true concurrency models Lecture Notes
in Computer Science 2399 77-94

[4] Boudol G 1989 Atomic actions. Bull. Eur. Ass. Theoret. Comput.
Sci. 38 136-44

[5] Busi N, van Glabbeek R J, Gorrieri R 1994 Axiomatising ST

bisimulation equivalence Proceedings of the IFIP
TC2/WG2.1/WG2.2/WG2.3 Working Conference on Programming

Concepts,Methods and Calculi 169-88
[6] Castellano L, De Michelis G, Pomello L 1987 Concurrency vs.

interleaving: An instructive example Bull. Eur. Ass. Theoret.

Comput. Sci. 31 12-5
[7] Majster-Cederbaum M, Wu J 2003 Towards action refinement for

true concurrent real time Acta Informatica 39 1-47
[8] Clarke E M, Grumberg O, Minea M, Peled D 1999 State space

reduction using partial order techniques STTT 2(3) 279-87

[9] Darondeau P, Degano P 1993 Refinement of actions in event
structures and casual trees Theoretical Computer Science 118 21-48

[10] Darondeau P, Degano P 1989 Casual trees Automata, Languages

and Programming, Lecture Notes in Computer Science 372 234-48
[11] Jiang J, Wu J 2005 Symmetry and autobisimulation Proceedings of

the 6th International Conference on Parallel and Distributed
Computing, Applications and technologies. IEEE Computer Society

Press 866-70

[12] Jiang J, Wu J, Yan W 2005 Structural reductions in process algebra
languages Proceedings of the 11th Joint International Computer

Conference. World Scientific Publishing Co. 596-600
[13] Degano P, Gorrierri R 1995 A causal operational semantics of

action refinement Information and Computation 122 97-119

[14] van Glabbeek R J, Goltz U 1989 Equivalence notions for
concurrent systems and refinement of actions Mathematical

Foundations of Computer Science, Lecture Notes in Computer

Science 379 237-48

[15] van Glabbeek R J 1990 The linear time-branching time spectrum

CONCUR’90, Lecture Notes in Computer Science 458 297-8
[16] van Glabbeek R J, Goltz U 1990 A deadlock-sensitive congruence

for action refinement Institut fuer Informatik, Technische
Universitaet Munchen:SFB-Bericht 342/23/90 A

[17] van Glabbeek R J, Goltz U 2001 Refinement of actions and

equivalence notions for concurrent systems Acta Informatica
37(4/5) 229-327

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 94-101 Tang Weidong, Wu Jinzhao, Liu Meiling

101
Computer and Information Technologies

[18] Fecher H, Majster-Cederbaum M, Wu J 2002 Refinement of actions
in a real-time process algebra with a true concurrency model

Electronic Notes in Theoretical Computer Science 70(3) 620-40
[19] Gorrieri R, Rensink A 2001 Action Refinement //Bergstra J A,

Ponse A and Smolka S A, editors Handbook of Process Algebra

New York: Elsevier Science 1047-147
[20] Huhn M 1996 Action refinement and property inheritance in

systems of sequential agents Concur’96, Lecture Notes in
Computer Science 1119 639-54

[21] Jategaonkar L, Meyer A R 1992 Testing equivalences for Petri nets

with action refinement Concur’92, Lecture Notes in Computer
Science 630 17-31

[22] Majster-Cederbaum M, Wu J 2001 Action refinement for true
concurrent real time Proc. ICECCS’01, IEEE Computer Society

Press 58-68

[23] Majster-Cederbaum M, Wu J, Yue H 2006 Refinement of actions
for real-time concurrent systems with causal ambiguity Acta

Informatica 42(6/7) 389-418
[24] Majster-Cederbaum M, Wu J 2003 Adding action refinement to

stochastic true concurrency models ICFEM’03 Lecture Notes in

Computer Science 2885 226-45

[25] Alur R, Brayton R K, Henzinger T A, Qadeer S, Rajamani S K

1997 Partial-order reduction in symbolic state-space exploration
CAV’97, Lecture Notes in Computer Science 1254 340-51

[26] Sun X, Zhang W, Wu J 2004 Event-based operational semantics
and a consistency result for real-time concurrent processes with

action refinement Journal of Computer Science and Technology
19(6) 828-40

[27] Winskel G 1989 An Introduction to Event structures Berlin:

Springer, LNCS 354 364-97
[28] Wu J 2000 Logic programming-taking advantage of symmetry

Proc. Of ASCM’00, World Scientific Publ. 100-9
[29] Wu J, Fecher H 2004 Symmetric structure in logic programming

Journal of Computer Science and Technology 19(6) 803-11

[30] Goltz U, Wehrheim H 1996 Modelling causality by dependency of
actions in branching time semantics Information Processing Letters

59(4) 179-84
[31] Vogler W 1991 Bisimulation and action refinement STACS’91,

Lecture Note in Computer Science 480 309-21

[32] Tang W, Wu J Interleaving Semantics and Action Refinement in
Event Structures To be published

[33] Vogler W 1992 Modular construction and partial order semantics of
Petri nets Lecture Note in Computer Science 625 625-48

[34] Czaja I, van Glabbeek R J, Goltz U 1992 Interleaving semantics

and action refinement with atomic choice Advances in Petri Nets,

Lecture Notes in Computer Science 609 89-107

Authors

Weidong Tang

Current position, grades: Associate professor
University studies: Computer Software and Theory
Scientific interest: Symbolic computation, formal verification

Jinzhao Wu

Current position, grades: Professor, Ph.D.
University studies: Computer Software and Theory
Scientific interest: Symbolic computation, automated reasoning, formal methods

Meiling Liu

Current position, grades: Teacher, Lecturer
University studies: Computer Software and Theory
Scientific interest: Data Mining, formal verification

