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Abstract 

An event structure acts as a denotational semantic model of concurrent systems. Action refinement is an essential operation in the 

design of concurrent systems. However, there exists an important problem about preserving equivalence under action refinement. If 

two processes are equivalent with each other, we hope that they still can preserve equivalence after action refinement. In linear time 

equivalence and branching time equivalence spectrum, step equivalences, which include step trace equivalence and step bisimulation 

equivalence are not preserved under action refinement [17]. In this paper, we define a class of concurrent processes with specific 

properties and put forward the concept of clustered action transition, which ensures that step equivalences are able to preserve under 
action refinement. 
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1 Introduction 

 

In order to model concurrent systems, we hope to have 

formal method for hierarchical structure. Action 

refinement is the core operation of the hierarchical 

method, which interprets an action in higher abstract 

layer with a process in lower layer, hence reduces the 

level of abstraction and eventually reaches its 

implementation layer. In the development course from 

top to bottom of concurrent system, we must first build 

models, which depict the system with description 

language of top layer; subsequently, according to these 

descriptions, we complete its implementation. This 

course often requires equivalence notion to verify the 

correctness of implementation of system. More 

concretely, assuming that P represents the descriptions of 

system and Q  represents its implementation, if P is 

equivalent with Q  (expressed as P Q ), then this shows 

that Q  is correct. In development, the description P  of a 

system can be refined layer-by-layer; accordingly, its 

implementation Q  can be converted from framework 

into code or electronic components. Only the description 

and its implementation at all levels are required to 

maintain equivalence so as to ensure correctness of its 

implementation. This leads to an important question what 

kind of equivalence is maintained under action 

refinement, that is, if two concurrent systems are 

equivalent with each other, we hope that they still can 

preserve equivalence after action refinement. 

Vogler [31, 33] first raised the basic thought of 

preserving equivalence under action refinement. Czaja, 

Van Glabbeek and Goltz [34] demonstrated that if 

interleaving bisimulation equivalence doesn’t produce 

choice operations or action self-concurrences after 

actions are refined then it can preserve equivalence under 

action refinement, but interleaving trace equivalence still 

cannot preserve .Goltz and Wehrheim [30] proved that 

history preserving bisimulation is consistent with global 

causal dependencies, but they did not further discuss 

about the problem how to preserve equivalence under 

action refinement, and did not discuss that there are other 

situations under environment of action independencies. 

At last, in paper [17] Van Glabbeek and Goltz 

summarized that research results of action refinement in 

recent ten years, gave a detailed explanation for 

preserving equivalence problem under action refinement, 

and proved that interleaving equivalence cannot preserve 

under action refinement in general, but did not discussed 

further. Moreover, no work further discusses preserving 

problem under action refinement of step trace 

equivalence and step bisimulation equivalence. In this 

paper, we define a class of concurrent processes with 

specific properties and put forward the concept of 

clustered action transition, which ensures that step 

equivalences are able to preserve under action refinement 

in the absence of constraints. 

 

2 Event structures and action refinement 

 

Assume that Act be a set of actions. 
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Definition 2.1 A event structure  is a 5-tuple 

 , , #, ,E l  , where 

E is the set of events; 

E E   is irreflexive partial relation, and satisfy the 

rule of finite causes that  : 1 1e E e E e e     is finite; 

In addition, its inverse “<” is expressed as “>”; 

# E E   is irreflexive and finite conflicting relation, 

and satisfy the rule of inheriting of conflict that 

1, 2, 3 : 1 2e e e E e e    1# 3 2# 3e e e e ; 

E E    is irreflexive concurrent relation, 

altogether with < and # to satisfy the principle of partition 

that # E E    , 

1 2e e   1 2 1 2 2 1 1# 2e e e e e e e e       ; 

:l E Act  is a label function of actions. 

In this paper, let  stand for the set of all event 

structures.  

Definition 2.2 Let ,  . A relation between  

and  is called isomorphic (expressed as  ) iff 

there exists an bijection between their sets and preserves 

corresponding relations with ,  #,    and same 

corresponding labels. 

 Unless specified, we do not discriminate isomorphic 

event structures. 

The behaviour of event structure is depicted with 

configuration which is the set of events with specific 

properties. Configurations are considered as possible 

states of system. The following is its definition. 

Definition 2.3 Let X be a subset of the set E  of all 

events in event structure . 

(1) X is left closed iff 

1, : 1 1e e E e X e e e X       ; 

(2)X is conflicted-free iff X  is conflicted-free; 

(3)X is a configuration iff X is not only left closed but 

also conflicted-free. 

Here, let  C  represent the set of all configurations 

in event structure . 

A configuration X  ( )X C  is called successfully 

terminated configuration iff 

: 1 : 1#e E e X e X e e     . 

The event structure is also often represented with 

graph, where ,    stands for casual relation and 

immediately conflict relation in event structure 

respectively, inheriting conflict relation, which is not 

considered and independent relation is not explicitly 

expressed. 

Example 2.1 The system    ; ;a b c b d  , 

executing either ,a b  concurrently or ,c b  and d  

sequentially, can be described by the event structure with 

events e1,e2,e3,e4,e5 with ( 1) ,  ( 3)l e a l e c  , 

( 2) ( 4)l e l e b  , ( 5)l e d , where 1 2, 3 4 5e e e e e   , 

each of e1,e2 is in conflict with each of e3,e4,e5. This 

event structure is expressed as below. 

 
Its configurations are    , 1 , 2e e , 

       1, 2 , 3 , 3, 4 , 3, 4, 5e e e e e e e e , where 

   1, 2 , 3, 4, 5e e e e e  are terminated configurations.  

Basic thought of action refinement is: replace an 

action in higher layer with a process in lower layer, do it 

layer by layer, until get detailed design or implementation 

of system. 

Definition 2.4 A function  :ref Act E    is 

called a refinement function of event structure, iff 

: ( )a Act ref a   is not empty, finite and conflict-free. 

Let  .  ref  is an event structure defined as 

follows: 

     ( ) , ,ref ref l e
E e e e E e E    , (1) 

     

 ( 1)

1, 1 2, 2   1

2 or 1 2 1 2

ref

ref l e

e e e e iff e

e e e e e

  

   
, (2) 

     1, 1 # 2, 2   1# 2
ref

e e e e iff e e  , (3) 

     

 ( 1)

1, 1 2, 2   1 2 or

1 2 1 2

ref

ref l e

e e e e iff e e

e e e e

  

   
, (4) 

     ( )
, ( )

ref ref l e
l e e l e  . (5) 

Example 2.2 Continue with Example 2.1. Assuming 

that ( ) ( 1; 2) 3ref b b b b  , the event structure after action 

refinement is expressed as Figure 2.2. 

 

FIGURE 1 The event structure  
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In the process of action refinement, each event e 

labelled by b is replaced by a disjoint copy, 
e

, of 

( )ref b , i.e. the event e2 is replaced by (e22;e23)#e21 

and the event e4 is replaced by (e41;e42)#e43  [17]. The 

causality and conflict structure is inherited from : all 

events which were casually before e will be casually 

before all events of 
e

, every event, which casually 

followed e will casually follow all events of 
e
, and all 

events in conflict with e will be in conflict with all the 

events of all events which were casually before e will be 

casually before all events of 
e
. 

 

3 Step equivalences 

 

Step equivalences embody step trace equivalence and 

step bisimulation equivalence. To begin with, we give the 

definitions of single action transition and step action 

transition by comparison. 

Definition 3.1 Let  . A transition relation 
aX X   is called single action transition iff 

 , , ,a Act X X C X X    , and 

: , ( )e E X X e l e a     . 

Here, aX X   denotes that the state expressed 

by Configuration X turns into the one expressed by 

Configuration 'X  after performing single action a  in 

event structure  .  

Definition 3.2 Let  . A transition AX X   

is called a step action transition iff ActA N  i.e., A is 

multiple set in Act,  ,X X C , 

,X X X X G    , to make X, :   ed e G d     and 

 l G A , where   Actl G N  is given by 

      l G a e G l e a   . 

Here, AX X   means that in event structure , 

after independently executing all actions of set A, the 

state expressed by configuration X is changed into the 

one expressed by configuration X  .  

According to the above-mentioned definitions, 

obviously there is following proposition. 

Proposition 3.1 A single action transition is also a 

step action transition. 

Proof is omitted.  

Then, we define trace and interleaving trace 

equivalence, step trace and step trace equivalence by 

comparison. 

Definition 3.3 Let  . A word 

1 *na a Act   is called a trace of event structure 

 iff  0 , , :nX X C   
0X   and 

i-1X , 1, ,ia

iX i n  . 

Here, trs    represents the set of all traces in event 

structure . 

Definition 3.4 Let ,  . A relation between  

and  is called interleaving trace equivalence (expressed 

as 
it ) iff trs  =trs   . 

Definition 3.5 Let  . A sequence 

  1 i  1, ,Act

nA A A N i n    is called a step 

trace of event structure  iff 

 0 0, , :nX X C X    and 

i-1X , 1, ,iA

iX i n   is a step action transition. 

Here, steptrs    represents the set of all step traces 

of event structure . 

Definition 3.6 Let ,  . A relation between  

and  is called step trace equivalence (expressed as 

st ) iff steptrs  =steptrs   . 

Furthermore, we define interleaving bisimulation 

equivalence and step bisimulation equivalence by 

comparison. 

Definition 3.7 Let ,  . A relation 

   R C C   is called a interleaving bisimulation 

between  and  iff  , R    and if  ,X Y R  

then  

, :aX X a Act Y   

   ,aY Y X Y R     , 

, :aY Y a Act X   

   ,aX X X Y R     .   

A relation between  and  is called interleaving 

bisimulation equivalence (expressed as 
ib   ) iff 

there exists a interleaving bisimulation between them. 

e

4 

e

2 

FIGURE 2 The event structure after action 
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Definition 3.8 Let ,  . A relation 

   R C C   is called a step bisimulation between 

 and  iff  , R    and if  ,X Y R  then  

, :A ActX X A N Y   

   ,AY Y X Y R     ; 

, :A ActY Y A N X   

   ,AX X X Y R     .  

A relation between  and  is called step 

bisimulation equivalence (expressed as 
sb ) iff 

there exists a step bisimulation between them. 

According to the definitions of trace equivalence and 

bisimulation equivalence, obviously there are following 

two propositions. 

Proposition 3.2 
ib it   . 

Proposition 3.3 
sb st   . 

The paper [17] has showed that step bisimulation 

equivalence and step trace equivalence cannot preserve 

under action refinement. The following proposition 

shows that if no independency exists in event structure 

then step equivalences (include step trace equivalence 

and step bisimulation equivalence) are able to preserve 

under action refinement. 

Proposition 3.4 Let ,  , let ref be a refinement 

function. If independency between events in an event 

structure is such that =     then 

(1) 
st stref( ) ref( )   . 

(2) 
sb sbref( ) ref( )   . 

Proof (1) Because =    , any transition in 

event structures  and is single action transition. 

Also, by proposition 3.1, 
st it   . By 

proposition 3.5(1) [31], 
it itref( ) ref( )   , 

namely, trs(ref( )) trs(ref( )) . In  and , every 

action label is exactly the same and is refined in the same 

way; moreover, =    . Hence, there exist same 

multiple action sets where actions are just concurrent in 

ref( )  and ref( ) . So we arrive at the conclusion that 

steptrs(ref( )) trs(ref( ))step , namely 

stref( ) ref( ) . 

Proof (2) Because =    , any transition in 

event structures  and  is single action transition. 

Also, by proposition 3.1, 
sb ib   . By 

proposition 3.5(2) [31], ib ibref( ) ref( )   . 

In  and , every action label is exactly the same and 

is refined in the same way; moreover, =    . 

Hence, there exist same multiple action sets where 

actions are all concurrent and branching time properties 

of corresponding action are just the same in ref( )  and 

ref( ) . So we arrive at the conclusion that 

ib sbref( ) ref( ) ref( ) ref( )   . 

 

4 Clustered action transition 

 

We introduce new one class action transition, where A is 

multiple set in action set Act and all actions within A 

independently perform with each other. We call this 

multiple set A as a clustered action and call this class 

transitions as clustered action transitions that is in fact 

one kind of special step action transition. With clustered 

action transitions, we construct two new types of 

equivalence. 

Definition 4.1 Let  . A transition AX X   

is called a clustered action transition iff ActA N  (i.e., A 

is multiple set in Act), 

 , , ,X X C X X X X G      , the events in set G 

satisfy: 

(1) entire independency of causes: 

    X 1 1, :   e   ed e G d e E e e      

   2 2   de E e d G    and ( )l G A ; 

(2) same causality: 

 1 2 1 2 3 1 3\ , : :e E G e G e e e G e e       

 1 2 3 1 3:e e e G e e     ; 

(3) same conflict relation: 

 1 2 1 2 3 1 3E \ , : # : #e G e G e e e G e e      . 

Here,   Actl G N  results from 

   ( ) ( )l G a e G l e a   . 

Clustered action transition AX X   represents 

that after independently executing all actions of set A, the 

state expressed by configuration X is changed into the 

one expressed by configuration X   in event structure 

. 

Example 4.1 In a simple process 

   ;a b c d f  , its actions names corresponds to 

events ,  ,  ,  a b c de e e e  and fe  respectively. Assume that 

event structure model  of process K is , figure 4.1 

describes all single action transitions and configurations 

of , whereas figure 4.2 describes its all clustered 

action transitions and configurations. Find from 

comparison of two figures that when arriving at 

configuration  ,  ,  ,  a b c de e e e , there exists 10 possible 

transitions in figure 4.1, however there exists only 2 

clustered action transitions in figure 4.2 . 

This example shows that clustered action transitions 

can simplify the system expressed by single action 

transitions. If applying this thought to simplify systems, a 

lot of good results may acquire.  
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FIGURE 3 Single action transitions in a event structure 

 
FIGURE 4 Clustered action transitions in a event structure 

Definition 4.2 suppose that e  is an event in event 

structure . Independency set of cause on e  e , 

including itself of e , is defined as 

     1 1   ee e E e e    . 

In order to study the follow-up problems, we give a 

proposition in advance. 

Proposition 4.1 Let  . If all transitions in  

are clustered action transitions then 

(1)   :Ad E X X     ( ) ,d G   where 

ActA N ,  , , ,X X C X X X X G       and 

 l G A ; 

(2)   : ( ),AX X d E G d      where 

ActA N ,  , , ,X X C X X X X G       and 

 l G A ; 

(3)  
e E

e E


 ; 

(4) 
1 2 1 2, :e e E e e     

 1 2 1 2  e ( ) ( )e e e     . 

Proof Conclusions (1), (2) and (3) is very easy to 

reach, omitted here. Only give proof of (4). If 

1 2( ) ( )e e    then 
1 2( ) ( )e e e   . By definition 

4.1, we obtain 
1 2( ) ( ) ( )e e e    , consequently obtain 

 1  e2 or e1=e2either e  . This contradict with 

 1 2 1 2  ee e e   . Accordingly, arrive at the 

conclusion that 

1 2 1 2, :e e E e e     1 2 1 2  e ( ) ( )e e e     .  

The above proposition shows: If all transitions in an 

event structure are clustered action transitions then all 

independent actions involved in a clustered action 

transition are seen as a “big” action, its corresponding 

events can be thought of as a “big” event. Hence, not only 

no independency between events exists in this event 

structure but also independency sets of cause divide set of 

events into different parts, which induces an equivalence 

relation in set of events of this event structure. 

Here, clustered action transition is a special kind of 

step transition. The fact that there exist entire 

independency of cause in a clustered action transition 

means that an action only belongs to a certain clustered 

action and is not shared with other clustered action. For 

example, in the process  ;a b c , action c may belong to 

two clustered actions i.e.  ,a c  and  ,b c , hence the 

event structure corresponding to this process cannot 

satisfy the requirement of entire independency of cause. 

Thus, the transitions here are not clustered action 

transitions but general step action transitions. This 

exactly is the reason why process  ;a b c  is step trace 

equivalence with process    ; ;a c b a b c , but step 

trace equivalence cannot hold under action refinement. 

On the contrary, independent events in clustered action 

transition possess same causal relation and same conflict 

relation, so every clustered action can be seen as a “big” 

action. These advantages ensure that equivalence based 

on clustered action transition can hold under action 

refinement. Accordingly, we introduce concept of 

clustered action transition equivalence. 

Definition 4.3 Let  . A sequence 

  1 i  1, ,Act

nA A A N i n    is called a 

clustered trace of event structure  iff 

 0 0, , :nX X C X    and 

i-1X , 1, ,iA

iX i n   is a clustered action transition. 
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Here, Clusteredtrs    represents the set of all 

clustered traces of event structure . 

Subsequently, we define clustered trace equivalence. 

Definition 4.4 Let ,  , all transitions in  

and  be clustered transitions. Let  Clusteredtrs and 

 Clusteredtrs  be the sets of all clustered traces of , 

 respectively. A relation between  and  is called 

clustered trace equivalence (expressed as 
ct ) iff 

Clusteredtrs  =Clusteredtrs   . 

The following propositions show that clustered trace 

equivalence is accordance with step trace equivalence in 

given conditions. 

Proposition 4.2 Let ,  .If all transitions in 

event structures  and  are clustered action 

transitions then ct st   . 

Proof By definition 3.2 and definition 4.1, we draw 

the above conclusion at once.                 

Proposition 4.3 Let ,  . If all transitions in 

event structures  and  are clustered action 

transitions then 
ct it   . 

Proof By definition 4.1 and proposition 4.1, 

, ( 1, , ,  1, , ,  )i jA A i n j n i j     in a clustered trace, 

then all actions in 
iA  are independent of those in 

jA . 

Performing of each action in 
iA  does not interfere with 

those in jA , vice versa. Consequently, 

   Clusteredtrs Clusteredtrs     trs trs

, i.e. 
ct it   .  

Provide that 
1 nW A A , where Act

iA N  

 ( 1, , )i n  be a clustered trace, and 
iA  stand for the 

number of elements, then the clustered trace W 

corresponds to 1 2! ! !nA A A    general traces. In 

example 4.1, the clustered trace   , ,a b c d  corresponds 

to 4 (namely,    , ! , ! 2! 2! 4a b c d    ) general 

traces , , ,abcd abdc bacd badc . 

After discussing clustered trace equivalence, we begin 

with another new class of equivalence and study whether 

they can maintain under action refinement or not. This 

class of equivalence is designated clustered bisimulation 

equivalence. The following provides for its definition. 

Definition 4.5 Let ,  , let all transitions in  

and  be clustered action transitions. A relation 

   R C C   is called a clustered bisimulation 

between  and  iff  , R    and if  ,X Y R  

then  

,A ActX X A N  

 :   ,AY Y Y X Y R       ; 

,A ActY Y A N  

 :   ,AX X X X Y R       . 

A relation between  and  is called clustered 

bisimulation equivalence (expressed as 
cb ) iff 

there exists a clustered bisimulation between them. 

Obviously, by definition 4.5, we come to a decision 

that 
cb ct   . 

Proposition 4.4 Let ,  . If all transitions in 

event structures  and  are clustered action 

transitions then 
cb sb   . 

Proof is omitted.  

The above proposition shows that clustered 

bisimulation equivalence is consistent with step 

bisimulation equivalence under certain conditions. 

Proposition 4.5 Let ,  . If all transitions in 

event structures  and  are clustered action 

transitions then 
cb ib   . 

Procedure of proof is similar to that of proposition 

4.3, omitted here.  

 

5 Preserving of step equivalences 

 

The paper [17] has demonstrated that step equivalence 

cannot preserve under action refinement in the general 

case. However, proposition 3.4 shows that step 

equivalence without concurrency can preserve under 

action refinement. This part will extend proposition 3.4 

and show that in the presence of concurrency, step 

equivalence may preserve under action refinement in 

given conditions.  

Proposition 5.1 Let ,  , let ref be a refinement 

function. If all transitions in event structures  and  

are clustered action transitions then 

(1) ct stref( ) ref( )   ; 

(2) 
st stref( ) ref( )   . 

Proof (1) By proposition 4.2, 
ct st   . 

By definition 4.1 and proposition 4.3, firstly, each 

clustered action transition corresponds to many single 

action transitions formed by interleaving performing of 

clustered actions; Secondly, when single action is refined, 

the corresponding clustered action is refined; Thirdly, 

Concurrent actions involved in per clustered action can 

be seen as one action, accordingly, their corresponding 

events also can be seen as one event. Therefore, by this 

treatment, there is not independency of cause in this event 

structure. Hence, we derive from proposition 3.4(1) that 

ct st stref( ) ref( )     . 

(2) By proposition 4.2 and the above derivation 

process, we immidiately reach a conclusion that 

st stref( ) ref( )   .  

This proposition shows that if all transitions in an 

event structure are clustered action transitions then step 

trace equivalence can hold under action refinement. 
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Subsequently, we discuss the relationship between 

clustered bisimulation equivalence and step bisimulation 

equivalence under action refinement, as well as how to 

preserve step bisimulation equivalence under action 

refinement. 

Proposition 5.2 Let ,  , let ref be a refinement 

function. If all transitions in event structures  and  

are clustered action transitions then 

(1)
cb sbref( ) ref( )   ; 

(2) 
sb sbref( ) ref( )   . 

Proof (1) By proposition 4.4, 
ct st   . 

By definition 4.1 and proposition 4.5, firstly, each 

clustered action transition corresponds to many single 

action transitions formed by interleaving performing of 

clustered actions; Secondly, when single action is refined, 

the corresponding clustered action is refined; Thirdly, 

Concurrent actions involved in per clustered action can 

be seen as one action, accordingly, their corresponding 

events also can be seen as one event. Therefore, by this 

treatment, there are not independency of cause in this 

event structure. Hence, we derive from propositin 3.4(2) 

that cb sb sbref( ) ref( )     . 

(2) By proposition 4.4 and the above derivation 

process, we immidiately reach a conclusion that 

sb sbref( ) ref( )   . 

This proposition shows that if all transitions in an 

event structure are clustered action transitions then step 

bisimulation equivalence can hold under action 

refinement. 

To sum up, if all transitions in event structures are 

clustered action transitions then two kinds of step 

equivalences, including step trace equivalence and step 

bisimulation equivalence, can hold under action 

refinement. Proposition 5.1 and proposition 5.2 extend 

proposition 3.4. 

 

6 Results and Discussion 

 

The paper has demonstrated that (1) In event structures 

without independency between events, step trace 

equivalence and step bisimulation equivalence can 

preserve under action refinement; (2) In event structures, 

if all transitions are clustered action transitions, then with 

clustered trace equivalence between event structures, we 

can reach that step trace equivalence can preserve under 

action refinement; likewise, with clustered bisimulation 

equivalence between event structures, we can reach that 

step bisimulation equivalence can preserve under action 

refinement. 

Therefore, we find a class of concurrent processes 

with specific properties, which enable step equivalence to 

preserve under action refinement in the absence of 

constraint. 

Our next work is to introduce the thought of clustered 

action transition into model checking so as to deal with 

states explosion problem in the process of system 

verification. 

 

Acknowledgements 

 

This Work is supported by Grants No. HCIC201306 of 

Guangxi HCIC lab Open Fund, the National Natural 

Science Foundation of China under Grant No. 11371003, 

the Natural Science Foundation of Guangxi under Grant 

No. 2011GXNSFA018154 and No. 

2012GXNSFGA060003, the Science and Technology 

Foundation of Guangxi under Grant No. 10169-1, the 

Scientific Research Project No. 201012MS274 from 

Guangxi Education Department., and Science Computing 

and Intelligent Information Processing of GuangXi higher 

education key laboratory No. GXSCIIP201201. 

 

References 

[1] Wu J 2001 Action refinement in timed LOTOS Proc. Of ASCM’01, 
World Scientific Publ. 183-92 

[2] Aceto L, Hennessy M C B 1994 Adding action refinement to a 
finite process algebra Information and Computation 115 179-247 

[3] Fecher H, Majster-Cederbaum M, Wu J 2002 Action refinement for 

probabilistic processes with true concurrency models Lecture Notes 
in Computer Science 2399 77-94 

[4] Boudol G 1989 Atomic actions. Bull. Eur. Ass. Theoret. Comput. 
Sci. 38 136-44 

[5] Busi N, van Glabbeek R J, Gorrieri R 1994 Axiomatising ST 

bisimulation equivalence Proceedings of the IFIP 
TC2/WG2.1/WG2.2/WG2.3 Working Conference on Programming 

Concepts,Methods and Calculi 169-88 
[6] Castellano L, De Michelis G, Pomello L 1987 Concurrency vs. 

interleaving: An instructive example Bull. Eur. Ass. Theoret. 

Comput. Sci. 31 12-5 
[7] Majster-Cederbaum M, Wu J 2003 Towards action refinement for 

true concurrent real time Acta Informatica 39 1-47 
[8] Clarke E M, Grumberg O, Minea M, Peled D 1999 State space 

reduction using partial order techniques STTT 2(3) 279-87 

[9] Darondeau P, Degano P 1993 Refinement of actions in event 
structures and casual trees Theoretical Computer Science 118 21-48 

[10] Darondeau P, Degano P 1989 Casual trees Automata, Languages 

and Programming, Lecture Notes in Computer Science 372 234-48 
[11] Jiang J, Wu J 2005 Symmetry and autobisimulation Proceedings of 

the 6th International Conference on Parallel and Distributed 
Computing, Applications and technologies. IEEE Computer Society 

Press 866-70 

[12] Jiang J, Wu J, Yan W 2005 Structural reductions in process algebra 
languages Proceedings of the 11th Joint International Computer 

Conference. World Scientific Publishing Co. 596-600 
[13] Degano P, Gorrierri R 1995 A causal operational semantics of 

action refinement Information and Computation 122 97-119 

[14] van Glabbeek R J, Goltz U 1989 Equivalence notions for 
concurrent systems and refinement of actions Mathematical 

Foundations of Computer Science, Lecture Notes in Computer 

Science 379 237-48 

[15] van Glabbeek R J 1990 The linear time-branching time spectrum 

CONCUR’90, Lecture Notes in Computer Science 458 297-8 
[16] van Glabbeek R J, Goltz U 1990 A deadlock-sensitive congruence 

for action refinement Institut fuer Informatik, Technische 
Universitaet Munchen:SFB-Bericht 342/23/90 A 

[17] van Glabbeek R J, Goltz U 2001 Refinement of actions and 

equivalence notions for concurrent systems Acta Informatica 
37(4/5) 229-327 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 94-101 Tang Weidong, Wu Jinzhao, Liu Meiling 

101 
Computer and Information Technologies 

 

[18] Fecher H, Majster-Cederbaum M, Wu J 2002 Refinement of actions 
in a real-time process algebra with a true concurrency model 

Electronic Notes in Theoretical Computer Science 70(3) 620-40 
[19] Gorrieri R, Rensink A 2001 Action Refinement //Bergstra J A, 

Ponse A and Smolka S A, editors Handbook of Process Algebra 

New York: Elsevier Science 1047-147 
[20] Huhn M 1996 Action refinement and property inheritance in 

systems of sequential agents Concur’96, Lecture Notes in 
Computer Science 1119 639-54 

[21] Jategaonkar L, Meyer A R 1992 Testing equivalences for Petri nets 

with action refinement Concur’92, Lecture Notes in Computer 
Science 630 17-31 

[22] Majster-Cederbaum M, Wu J 2001 Action refinement for true 
concurrent real time Proc. ICECCS’01, IEEE Computer Society 

Press 58-68 

[23] Majster-Cederbaum M, Wu J, Yue H 2006 Refinement of actions 
for real-time concurrent systems with causal ambiguity Acta 

Informatica 42(6/7) 389-418 
[24] Majster-Cederbaum M, Wu J 2003 Adding action refinement to 

stochastic true concurrency models ICFEM’03 Lecture Notes in 

Computer Science 2885 226-45 

[25] Alur R, Brayton R K, Henzinger T A, Qadeer S, Rajamani S K 

1997 Partial-order reduction in symbolic state-space exploration 
CAV’97, Lecture Notes in Computer Science 1254 340-51 

[26] Sun X, Zhang W, Wu J 2004 Event-based operational semantics 
and a consistency result for real-time concurrent processes with 

action refinement Journal of Computer Science and Technology 
19(6) 828-40 

[27] Winskel G 1989 An Introduction to Event structures Berlin: 

Springer, LNCS 354 364-97 
[28] Wu J 2000 Logic programming-taking advantage of symmetry 

Proc. Of ASCM’00, World Scientific Publ. 100-9 
[29] Wu J, Fecher H 2004 Symmetric structure in logic programming 

Journal of Computer Science and Technology 19(6) 803-11 

[30] Goltz U, Wehrheim H 1996 Modelling causality by dependency of 
actions in branching time semantics Information Processing Letters 

59(4) 179-84 
[31] Vogler W 1991 Bisimulation and action refinement STACS’91, 

Lecture Note in Computer Science 480 309-21 

[32] Tang W, Wu J Interleaving Semantics and Action Refinement in 
Event Structures To be published 

[33] Vogler W 1992 Modular construction and partial order semantics of 
Petri nets Lecture Note in Computer Science 625 625-48 

[34] Czaja I, van Glabbeek R J, Goltz U 1992 Interleaving semantics 

and action refinement with atomic choice Advances in Petri Nets, 

Lecture Notes in Computer Science 609 89-107 

 

Authors  

 

Weidong Tang 
 
Current position, grades: Associate professor 
University studies: Computer Software and Theory 
Scientific interest: Symbolic computation, formal verification 

 

Jinzhao Wu 
 
Current position, grades: Professor, Ph.D. 
University studies: Computer Software and Theory 
Scientific interest: Symbolic computation, automated reasoning, formal methods 

 

Meiling Liu 
 
Current position, grades: Teacher, Lecturer 
University studies: Computer Software and Theory 
Scientific interest: Data Mining, formal verification 

 


