

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 54-59 Li Yan, Zhang Zhe, Jiang Guihong, Cui Xiaofeng

54
Mathematical and Computer Modelling

Model driven testing distributed environment monitoring system

Yan Li1, Zhe Zhang2*, Guihong Jiang1, Xiaofeng Cui1
1School of Computer, Shandong University of Technology, Zibo 255049, Shandong Province, China

2Software College, Nanyang Normal University, Nanyang 473000, Henan Province, China

Received 6 October 2013, www.tsi.lv

Abstract

Distributed environment monitoring system is more and more widely used, especially the design and verification of embedded system

in environmental monitoring is the guarantee of successful use of environmental monitoring. In this paper we demonstrate how test-

case prioritization can be performed with the use of model-checkers. For this, different well known prioritization techniques are adapted

for model-based use. New property based prioritization techniques are introduced. In addition it is shown that prioritization can be

done at test-case generation time, thus removing the need for test-suite post-processing. Several experiments for embedded systems

are used to show the validity of these ideas.

Keywords: test case prioritization, software testing, model checking, property testing

1 Introduction

In today's society, environment monitoring system is being

paid more attention. Distributed environment monitoring

system is more and more widely used [1], especially the

design and verification of embedded system in

environmental monitoring is the guarantee of successful

use of environmental monitoring.

It has been shown [2, 3] that the order in which the test-

cases of a test-suite are executed has an influence on the

rate at which faults can be detected. In this paper we

demonstrate how test-case prioritization can be performed

with the use of model-checkers. As common prioritization

techniques are based on program source-code, these

techniques have to be to adapted to the model-based

setting. In addition, new property based prioritization

techniques made possible by the use of model-checkers are

introduced.

Obviously, a model-checker based method to test case

prioritization is a useful addition to model-checker based

test-case approaches. We therefore show how

prioritization can be done at test-case generation time

when using model-checkers to create test-cases. That way,

no post-processing of the test-suites is necessary while still

achieving an improved fault detection ratio of the resulting

test-suite. The ideas described in this paper are illustrated

using several example applications.

This paper is organized as follows: Section 2 recalls the

principles of test-case prioritization and presents different

prioritization techniques for model-based use. Then,

Section 3 describes how prioritization is performed with

the help of a model-checker, while Section 4 shows how

prioritization can be done at test-case creation time.

Section 5 describes our experiment for several security-

* Corresponding author e-mail: jdd35@163.com

critical embedded systems and presents the results

achieved. Finally, Section 6 concludes the paper.

2 Test case prioritization

Test-case prioritization is the task of finding an ordering of

the test-cases of a given test-suite such that a given goal is

reached faster. The test-case prioritization problem is

defined by Rothermel et al. [4] as follows:

Given: T, a test-suite; PT, the set of permutations of T;

f a function from PT to the real numbers.

Problem: Find T PT such that

()()()[() ()]T T PT T T f T f T (1)

PT is the set of all possible orderings of T, and f is a

function that yields an award value for any given ordering

it is applied to. f represents the goal of the prioritization.

For example, the goal might be to reach a certain coverage

criterion as fast as possible, or to improve the rate at which

faults are detected. There are different test-case

prioritization techniques that can be used to achieve such

goals.

Several different prioritization methods have been

discussed in previous works [5, 8]. These methods are

generally based on the source code of a program, e.g., the

coverage of statements or functions. In contrast, when

using a model-checker to determine prioritization we base

the techniques on a functional model of the program to test.

This section does not provide a complete overview of all

available prioritization techniques but selects a

representative subset that can be used to illustrate the

usefulness of model-checkers in the prioritization process.

In addition, the use of a model-checker allows new kinds

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 54-59 Li Yan, Zhang Zhe, Jiang Guihong, Cui Xiaofeng

55
Mathematical and Computer Modelling

of prioritization techniques which are introduced in this

section.

2.1 TOTAL COVERAGE PRIORITIZATION

There are several code-based prioritization methods that

sort test-cases by the number of statements or functions

they cover. Model-checker based testing allows the

formulation of coverage criteria as properties, as described

in the next section. We therefore generalize from different

code based methods to a coverage based method which is

applicable to any coverage criterion expressible as a set of

properties.

For example, the model-based coverage criterion

Transition Coverage requires that each transition in an

automaton model is executed at least once. Test-case

prioritization according to transition coverage sorts test-

cases by the number of different transitions executed.

2.2 ADDITIONAL COVERAGE PRIORITIZATION

Total Coverage Prioritization achieves that those test-cases

with the biggest coverage are executed first. This does not

necessarily guarantee that the coverage criterion is

achieved as fast as possible. Additional coverage

prioritization first picks the test case with the greatest

coverage, and then successively adds those test-cases that

cover the most yet uncovered parts.

2.3 TOTAL FEP PRIORITIZATION

This technique orders test cases by the ability to expose

faults (fault exposing potential). Mutation analysis [6] is

used to determine these values. For a given program a set

of mutants is created by the application of a set of mutation

operators. Each application of a mutation operator creates

a mutant of the source code that differs from the original

by a single valid syntactic change. The mutation score

represents the ratio of mutants that a test-suite can

distinguish from the original program. This mutation score

can be calculated for each test-case separately, and then

used as an award value for test-case prioritization. Total

FEP prioritization uses the mutation score for a total

sorting

2.4 ADDITIONAL FEP PRIORITIZATION

Similarly to additional coverage based prioritization test-

cases can be sorted by the number of additional, yet

undetected mutants. First the test-case with the highest

mutation score is chosen, and then successively those test-

cases are added that maximize the total number of detected

mutants. Traditionally, this FEP based prioritization is

computationally more complex than coverage based

methods.

2.5 TOTAL PROPERTY PRIORITIZATION

This is a new technique made possible by the use of model-

checkers. It is based on the idea of property relevance [7].

A test-case consists of values that are used as input data for

the system under test, i.e., they represent the inputs the

system receives from its environment. A test-case is said

to be relevant to a requirement property if a property

violation is possible when the input values are provided to

an erroneous implementation. In practice, this can be

determined by checking whether there is a mutant that can

violate the property. A test-case can of course be relevant

to more than one property. Total property prioritization

sorts test-cases by the number of properties they are

relevant to.

2.6 ADDITIONAL PROPERTY PRIORITIZATION

Similarly to the previous techniques, this method begins

with the test-case that is relevant to the most properties and

then successively adds test-cases that are relevant to yet

uncovered properties.

2.7 HYBRID PROPERTY PRIORITIZATION

If the number of properties is significantly smaller than the

number of test-cases, then a property based prioritization

can quickly achieve property coverage. In general, the

prioritization of the remaining test-cases starts again with

the test-case with the highest award value. However, it is

also conceivable to combine two different award

functions. For example, it can be useful to sort test-cases

totally based on the number of relevant properties, and

then use a coverage prioritization as a secondary sorting

method within test-cases of equal property relevance. We

use transition coverage as secondary award value in our

experiments.

2.8 RANDOM PRIORITIZATION

Random prioritization is interesting for evaluation of the

different techniques. In average, any sorting method

should achieve better results than random prioritization in

order to be useful. We therefore use random prioritization

as a lower bound for our analysis.

2.9 OPTIMAL PRIORITIZATION

The optimal prioritization sorts test-cases such that a given

set of faults is detected with the minimum number of test-

cases. This technique is not applicable in practice as it

requires a-priori knowledge about the faults that are to be

exposed. However, in experiments with known mutants it

serves as upper bound for improvements that can be

achieved with prioritization.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 54-59 Li Yan, Zhang Zhe, Jiang Guihong, Cui Xiaofeng

56
Mathematical and Computer Modelling

3 Using model checking to determine prioritization

In this section we show how the prioritization methods

presented in the previous section can be performed in

practice. As mentioned, we use model-checkers for

prioritization. In order to do so it is necessary to re-

formulate test-cases as models, which allows analysis with

regard to certain properties. This can be easily done by

basing the transition relation of all variables on a special

state-counting variable, as suggested by Ammann and

Black [1]. As an example, assume a simple test-case

t = {(x = 1, y = 0), (x = 0, y = 1), (x = 1, y = 1)}.

Using the input language of the model-checker

NuSMV [5] which we used for our experiments, the test-

case can be expressed as:

3.1 COVERAGE PRIORITIZATION

Model-based coverage criteria can be expressed as trap

properties [9, 10]. For each coverable item one such

property is formulated, expressing that the item cannot be

reached. For example, a trap property might claim that a

certain state is never reached or that a certain transition is

never taken. Challenging a model-checker with a model

and a trap property results in a counter-example, which is

a trace illustrating how the item described by the trap

property is reached. This principle is used for test-case

creation, where it automatically results in test-suites that

achieve a given coverage criterion. It is also used to

measure the coverage of test-suites. The test-cases are

converted to models as described above, and then the

model-checker is challenged with the resulting models and

the trap properties. For each trap property that results in a

counter-example it is known that the test-case covers the

according item.

While for overall coverage measurement it is sufficient

to check how many trap properties are violated, this can

easily be extended such that each test-case is checked

against all trap properties. That way the overall coverage

of each test-case can be determined. This information can

be used in order to sort test-cases according to their

coverage, either totally or additionally. The prioritization

works as follows:

1) Create models from test-cases.

2) Create trap properties TP from coverage criterion.

3) for each test-case model t do.

4) model-check t against TP.

5) each trap resulting in a counter-example is covered.

6) end for

7) sort test-cases by number of covered traps.

3.2 FEP PRIORITIZATION

Fault exposing prioritization is based on mutation analysis.

Model and specification mutation was introduced by

Ammann and Black [11]. The ability to expose faults can

be measured as the mutation score of a test-case.

With model-checkers, this can be done in two ways.

One option is to create mutants of a given model, and then

symbolically execute the test-cases against these models

by combining the mutant model and the test-case model,

using the test-case values as input-values for the mutant. A

mutant is detected if the model-checker returns a

counterexample when queried whether the output values

of mutant and test-case are equal along the test-case.

Unlike coverage based methods, this requires the model-

checker to use the actuOrial model in addition to the test-

case model. If the model is complex, then this process is

less efficient than the coverage based method.

The alternative is to reflect the transition relation of the

model as special properties [12]. Each reflected property

refers to one variable. For each possible transition a

variable can take, there is one such property. It consists of

the transition condition and makes an assertion about the

value of the variable in the next state. These reflected

properties can then be mutated instead of the original

model. When checked against the original model the

mutated properties result in efficient test-suites [2]. A

mutation score can be efficiently calculated by checking

these properties against the test-case models. This

prioritization is therefore identical to coverage based

prioritization apart from the use of mutated reflected

properties instead of trap properties.

3.3 PROPERTY PRIORITIZATION

Property prioritization uses the concept of property

relevance. A test-case is relevant to a property if the

execution of the test-case can theoretically lead to a

violation of the property. As presented in [13], property

relevance can be determined with the aid of a model-

checker by symbolically executing the test-case against a

modified model which is allowed to take one single

erroneous transition. The model checker then efficiently

determines if a single erroneous transition is sufficient in

order to reach a property violating state during the test-case

execution. This process has to be repeated for each test-

case.

1) Create modified model M from model M .

2) Create models from test-cases.

3) for each test-case model t do.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 54-59 Li Yan, Zhang Zhe, Jiang Guihong, Cui Xiaofeng

57
Mathematical and Computer Modelling

4) Combine t and M such that M takes input values

from t instead of the environment.

5) Model-check M against all requirement properties.

6) t is relevant to each property causing a counter-example.

7) end for

8) Sort each test-case by relevance.

While the complexity of this evaluation process can be

higher than for coverage or reflection based methods, it is

only necessary to challenge the model-checker once with

each test-case, so this is still significantly more efficient

than the determination of the mutation score using

symbolic execution would be. Once the property relevance

of each test-case has been determined, this information can

be used in order to calculate a total or adding prioritization

for the test-cases.

3.4 OPTIMAL PRIORITIZATION

The optimal execution order of a test-suite with regard to

a set of mutants is calculated with a greedy algorithm that

successively adds the test-case next that detects the most

yet undetected mutants.

4 Prioritizing test case at creation

Each test-case is assigned an importance value, initially 1.

If a test-case is a prefix of another test-case or equal to it,

the importance of this other test-case is increased. If a test-

case subsumes other test-cases, then its importance is the

sum of the subsumed test-cases plus 1.

1) while t =ceate next test-case do

2) importance of t =1

3) if :t T t t then

4) increase importance of t by 1

5) else if :t T t t then

6) increase importance of t by 1

7) else if :t T t t then

8) for all :t T t t do

9) replace t with t in T

10) increase importance of t with importance of t
11) end for

12) else

13) inset t in T

14) end if

15) end while

16) sort test-cases by importance

When creating test-cases automatically it is often the

case that redundant test-cases are created. If a new test-

case is a prefix of another test-case it is sufficient to retain

the subsuming, longer test-case. If a new test-case

subsumes other test-cases it is sufficient to retain the new

test-case. Redundant test-cases are usually discarded.

However, this redundancy information can also be used to

prioritize test-cases. If a test-case or part of it is created

more than once, this can be seen as an indication that this

test-case is more important than other test-cases. With this

information prioritization can be performed without post-

processing of the test-suite.

5 Experimental results for three crucial embedded

systems

This section presents the results of an empirical evaluation

for three security-critical embedded systems aiming to

show that model-based test-case prioritization results in a

noticeable performance improvement. We also want to

analyze the newly defined property coverage techniques in

comparison to well-known techniques. Finally we want to

determine whether prioritization at test-case generation

time results in a measurable improvement.

5.1 APFD

In order to quantify the efficiency gains achieved with a

certain test-case prioritization, the metric APFD was

introduced by Rothermel et al. [13, 14]. This metric is the

weighted average percentage of faults detected over the

life of a test suite. The APFD of a test suite T consisting n

test cases and m mutants is defined as:

1 2 3 1
1 mTF TF TF TF

APFD
nm nm

 . (2)

Here, TFi is the first test-case in ordering T0 of T which

reveals fault i. We use this metric in order to compare the

different prioritization techniques.

5.2 EXPERIMENT SETUP

The evaluation is based on a set of three examples. Each

example consists of an SMV-model and specification.

Different model-checker based methods (various coverage

criteria, different mutation operators, property based

methods) are used in order to create 23 different test-suites

for each model. For each model a set of mutants is created.

Unlike for program mutation, a model-checker can

efficiently determine whether a model mutant is equivalent

to the original or not. The APFD values for each of the test-

suites is calculated using the subset of the in-equivalent

model mutants that can be detected by the test-suite. Table

1 sums up the results of the test-case generation and the

numbers of detected mutants. Only detectable mutants are

relevant for the determination of the APFD value, as the

test-case execution order has no influence on undetectable

mutants.

Car Control (CA) is a simplified model of a car control.

The Safety Injection System (SIS) example was

introduced in [3] and has since been used frequently for

studying automated test-case generation. Environmental

Control (CC) is based on [12]. In order to validate the

method we also use a set of 25 erroneous mutant

implementations for the Cruise Control example

applications written by Jeff Offutt.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 54-59 Li Yan, Zhang Zhe, Jiang Guihong, Cui Xiaofeng

58
Mathematical and Computer Modelling

TABLE 1 Test-suite statistics

Example
CA SIS EC

Avg Max Avg Max Avg Max

Test Cases 51 243 22 85 35 246
Mutants 264 311 265 339 535 732

5.3 RESULTS

Following the tradition of previous papers about test-case

prioritization we use box-plots to illustrate the results of

the APFD analysis. The box-plots illustrate minimum,

maximum, median and standard deviation for each of the

used prioritization methods. As can be seen in Figures 1, 3

and 4, there is still a gap between all prioritization

techniques and the optimal prioritization.

FIGURE 1 APFD of cruise control model

FIGURE 2 APFD of cruise control implementation

However, there is an improvement clearly visible

compared to the random sorting of the test-cases and the

original sorting, as provided by the test-case generation

algorithm. Figure 6 lists the average APFD values for all

examples and methods in a concise manner. The

improvement is not always as significant as reported in

previous works. This is probably because we used test-

suites of different sizes, and the improvement is not quite

so obvious for large test-suites. In general, a large amount

of the mutants is detected with the first couple of test-cases

(Figure 5), yet the remaining test-cases and mutants can

distort the APFD value, if there are many test cases.

Nevertheless, an improvement is visible. Figure 2

illustrates the APFD values for the same test-suites (except

the optimal one) as in Figure 1, executed with the 25

erroneous implementations of Cruise Control. The values

are comparable and we conclude that model-based

prioritization is also valid for real implementations.

FIGURE 3 APFD of environmental system

The prioritization performed at test-case generation

time (labelled presorted in the figures) is clearly better than

random ordering, however there is still a gap between

presorted test-suites and post-processing prioritization.

This gap is also visible in Figure 5. Interestingly, the

presorted test-suites performed better than most other

prioritization techniques during the evaluation on the

cruise control implementations. In general we can

conclude that prioritization at test-case generation is

definitely useful, especially as it only requires negligible

additional computational costs.

There are only minor differences between the various

prioritization techniques. In general, those techniques that

use adding sorting perform slightly better than those with

total sorting. Property prioritization performs good (regard

also Figure 5), in fact it sometimes outperforms coverage

based prioritization techniques.

However, this case study does not reflect on the quality

of the specification. It is conceivable that a specification

consisting of more and better properties will result in better

property based prioritization.

FIGURE 4 Fault detection rates for environmental control example

While model-checkers in general are prone to

performance problems this is not a problem for

prioritization, as the state space of test-case models is

usually significantly smaller than that of related functional

models.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 54-59 Li Yan, Zhang Zhe, Jiang Guihong, Cui Xiaofeng

59
Mathematical and Computer Modelling

6 Conclusion

In this paper we have demonstrated how model-checkers

can be used for test-case prioritization for the embedded

systems of environmental control.

This makes it possible to efficiently apply prioritization

when creating test-cases with model-checkers. We adapted

several well known prioritization methods originally based

on source code to models. In addition we introduced new

property based prioritization methods. Finally, we showed

that test-case prioritization can be performed automatically

during test-case generation, without post-processing.

References

[1] Hu C, Zhu L 2010 The analysis and the evaluation of complicated

network software LNCS 13(10) 1-5
[2] Wang Y, Xia H, Yan R 2008 The analysis of the social network and

the study of the application cases of NetDraw Modern education

technology 18(4) 85-9
[3] Pothen A, Simon H, Liou K P 1990 Petitioning sparse matrices with

eigenvectors of graphs. SIAM Matrix Anal. Appl 11 430-6

[4] Girvan M, Newman ME 2001 Community structure in social and

biological networks. Proc. Natl. Acad. Sci 99(12) 7821-6

[5] Newman ME, Girvan M 2004 Finding and evaluating community

structure in networks Phys. Rev. E 39(10) 69-84
[6] Toyoda M, Kitsuregawa M 2003 Extracting evolution of web

communities from a series of web archives Proceedings of the

fourteenth ACM conference on Hypenext and hypermedia 78-87
[7] Palla G, Derenyi I, Vicsek T 2007 The Critical Point of k-groups

Percolation in the Erdos–Renyi Graph Journal of Statistical Physics

128(1) 219-27
[8] Palla G, Barabasi A-L, Vicsek T 2007 Community dynamics in

social networks Noise and Stochastics in Complex Systems and

Finance 6601(3) 273–87

[9] Xu C, Zhang Y, Dan Y 2011 Ontology based Image Semantics

Recognition using Description Logics IJACT International Journal
of Advancements in Computing Technology 3(10) 1-8

[10] Ju C, Wei J 2012 Research on Multi-interest Profile Based on

Resource Clustering JCIT Journal of Convergence Information
Technology 7(21) 582-90

[11] Gargantini A, Heitmeyer C 1999 Using Model Checking to Generate

Tests From Requirements Specifications In Software Engineering -

ESEC/FSE’99: 7th European Software Engineering Conference,

Held Jointly with the 7th ACM SIGSOFT Symposium on the

Foundations of Software Engineering 1687(1) 146-62
[12] Kim J-M, Porter A 2009 A history-based test prioritization technique

for regression testing in resource constrained environments. In ICSE

’09: Proceedings of the 31th International Conference on Software
Engineering 139(3) 119-29

[13] Rothermel G, Untch R H, Chu C, Harrold M J 2009 Test case

prioritization: an empirical study Proceedings of the IEEE
International Conference on Software Maintenance 168(1) 179-83

[14] Srikanth H, Williams L 2005 On the economics of requirements-

based test case prioritization Proceedings of the 7th international
workshop on Economics-driven software engineering research

153(1) 1-3

Authors

Yan Li, born in April, 1977, Zibo County, Shandong Province, China

Current position, grades: the lecturer of School of computer, Shandong University of Technology, China.
University studies: B.Sc. in application of computer Technology from Northeast Forestry University, M.Sc. from Shandong University in China.
Scientific interest: computer modelling, information retrieval.
Publications: more than 10 papers.
Experience: teaching experience of 14 years, 3 scientific research projects.

Zhe Zhang, born in January, 1982, Nanyang County, Henan Province, China

Current position, grades: the lecturer of School of Software, Nanyang Normal University, China.
University studies: M.Sc. in computer applications from Huazhong University of Science & Technology in China.
Scientific interest: software engineering, formal modelling.
Publications: more than 6 papers.

Experience: teaching experience of 10 years, 4 research projects.

Guihong Jiang, born in November, 1966, Zibo County, Shandong Province, China

Current position, grades: the associate professor of School of computer, Shandong University of Technology, China.
University studies: B.Sc. in Organic chemical Engineering from Qingdao University of Science & Technology in China.
Scientific interest: database design, software engineering.
Publications: more than 6 papers, 8 teaching books about database or program design published.
Experience: teaching experience of 25 years, 2 scientific research projects.

Xiaofeng Cui, born in October, 1969, Zibo County, Shandong Province, China

Current position, grades: the associate professor of School of computer, Shandong University of Technology, China.
University studies: B.Sc. in computer science from China Agricultural University.
Scientific interest: data mining, artificial intelligence.
Publications: more than 4 papers.
Experience: teaching experience of 17 years, 10 education research projects.

http://link.springer.com/journal/10955

