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Abstract 

Distributed environment monitoring system is more and more widely used, especially the design and verification of embedded system 

in environmental monitoring is the guarantee of successful use of environmental monitoring. In this paper we demonstrate how test-

case prioritization can be performed with the use of model-checkers. For this, different well known prioritization techniques are adapted 

for model-based use. New property based prioritization techniques are introduced. In addition it is shown that prioritization can be 

done at test-case generation time, thus removing the need for test-suite post-processing. Several experiments for embedded systems 

are used to show the validity of these ideas. 
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1 Introduction 

 

In today's society, environment monitoring system is being 

paid more attention. Distributed environment monitoring 

system is more and more widely used [1], especially the 

design and verification of embedded system in 

environmental monitoring is the guarantee of successful 

use of environmental monitoring. 

It has been shown [2, 3] that the order in which the test-

cases of a test-suite are executed has an influence on the 

rate at which faults can be detected. In this paper we 

demonstrate how test-case prioritization can be performed 

with the use of model-checkers. As common prioritization 

techniques are based on program source-code, these 

techniques have to be to adapted to the model-based 

setting. In addition, new property based prioritization 

techniques made possible by the use of model-checkers are 

introduced. 

Obviously, a model-checker based method to test case 

prioritization is a useful addition to model-checker based 

test-case approaches. We therefore show how 

prioritization can be done at test-case generation time 

when using model-checkers to create test-cases. That way, 

no post-processing of the test-suites is necessary while still 

achieving an improved fault detection ratio of the resulting 

test-suite. The ideas described in this paper are illustrated 

using several example applications.  

This paper is organized as follows: Section 2 recalls the 

principles of test-case prioritization and presents different 

prioritization techniques for model-based use. Then, 

Section 3 describes how prioritization is performed with 

the help of a model-checker, while Section 4 shows how 

prioritization can be done at test-case creation time. 

Section 5 describes our experiment for several security-
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critical embedded systems and presents the results 

achieved. Finally, Section 6 concludes the paper. 

 

2 Test case prioritization 

 

Test-case prioritization is the task of finding an ordering of 

the test-cases of a given test-suite such that a given goal is 

reached faster. The test-case prioritization problem is 

defined by Rothermel et al. [4] as follows: 

Given: T, a test-suite; PT, the set of permutations of T; 

f a function from PT to the real numbers. 

Problem: Find T PT  such that 

( )( )( )[ ( ) ( )]T T PT T T f T f T          (1) 

PT is the set of all possible orderings of T, and f is a 

function that yields an award value for any given ordering 

it is applied to. f represents the goal of the prioritization. 

For example, the goal might be to reach a certain coverage 

criterion as fast as possible, or to improve the rate at which 

faults are detected. There are different test-case 

prioritization techniques that can be used to achieve such 

goals. 

Several different prioritization methods have been 

discussed in previous works [5, 8]. These methods are 

generally based on the source code of a program, e.g., the 

coverage of statements or functions. In contrast, when 

using a model-checker to determine prioritization we base 

the techniques on a functional model of the program to test. 

This section does not provide a complete overview of all 

available prioritization techniques but selects a 

representative subset that can be used to illustrate the 

usefulness of model-checkers in the prioritization process. 

In addition, the use of a model-checker allows new kinds 
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of prioritization techniques which are introduced in this 

section. 

 

2.1 TOTAL COVERAGE PRIORITIZATION  

 

There are several code-based prioritization methods that 

sort test-cases by the number of statements or functions 

they cover. Model-checker based testing allows the 

formulation of coverage criteria as properties, as described 

in the next section. We therefore generalize from different 

code based methods to a coverage based method which is 

applicable to any coverage criterion expressible as a set of 

properties. 

For example, the model-based coverage criterion 

Transition Coverage requires that each transition in an 

automaton model is executed at least once. Test-case 

prioritization according to transition coverage sorts test-

cases by the number of different transitions executed. 

 

2.2 ADDITIONAL COVERAGE PRIORITIZATION 

 

Total Coverage Prioritization achieves that those test-cases 

with the biggest coverage are executed first. This does not 

necessarily guarantee that the coverage criterion is 

achieved as fast as possible. Additional coverage 

prioritization first picks the test case with the greatest 

coverage, and then successively adds those test-cases that 

cover the most yet uncovered parts. 

 

2.3 TOTAL FEP PRIORITIZATION  

 

This technique orders test cases by the ability to expose 

faults (fault exposing potential). Mutation analysis [6] is 

used to determine these values. For a given program a set 

of mutants is created by the application of a set of mutation 

operators. Each application of a mutation operator creates 

a mutant of the source code that differs from the original 

by a single valid syntactic change. The mutation score 

represents the ratio of mutants that a test-suite can 

distinguish from the original program. This mutation score 

can be calculated for each test-case separately, and then 

used as an award value for test-case prioritization. Total 

FEP prioritization uses the mutation score for a total 

sorting 

 

2.4 ADDITIONAL FEP PRIORITIZATION 

 

Similarly to additional coverage based prioritization test-

cases can be sorted by the number of additional, yet 

undetected mutants. First the test-case with the highest 

mutation score is chosen, and then successively those test-

cases are added that maximize the total number of detected 

mutants. Traditionally, this FEP based prioritization is 

computationally more complex than coverage based 

methods. 

 

 

 

2.5 TOTAL PROPERTY PRIORITIZATION 

 

This is a new technique made possible by the use of model-

checkers. It is based on the idea of property relevance [7]. 

A test-case consists of values that are used as input data for 

the system under test, i.e., they represent the inputs the 

system receives from its environment. A test-case is said 

to be relevant to a requirement property if a property 

violation is possible when the input values are provided to 

an erroneous implementation. In practice, this can be 

determined by checking whether there is a mutant that can 

violate the property. A test-case can of course be relevant 

to more than one property. Total property prioritization 

sorts test-cases by the number of properties they are 

relevant to. 

 

2.6 ADDITIONAL PROPERTY PRIORITIZATION 

 

Similarly to the previous techniques, this method begins 

with the test-case that is relevant to the most properties and 

then successively adds test-cases that are relevant to yet 

uncovered properties. 

 

2.7 HYBRID PROPERTY PRIORITIZATION 

 

If the number of properties is significantly smaller than the 

number of test-cases, then a property based prioritization 

can quickly achieve property coverage. In general, the 

prioritization of the remaining test-cases starts again with 

the test-case with the highest award value. However, it is 

also conceivable to combine two different award 

functions. For example, it can be useful to sort test-cases 

totally based on the number of relevant properties, and 

then use a coverage prioritization as a secondary sorting 

method within test-cases of equal property relevance. We 

use transition coverage as secondary award value in our 

experiments. 

 

2.8 RANDOM PRIORITIZATION 

 

Random prioritization is interesting for evaluation of the 

different techniques. In average, any sorting method 

should achieve better results than random prioritization in 

order to be useful. We therefore use random prioritization 

as a lower bound for our analysis. 

 

2.9 OPTIMAL PRIORITIZATION 

 

The optimal prioritization sorts test-cases such that a given 

set of faults is detected with the minimum number of test-

cases. This technique is not applicable in practice as it 

requires a-priori knowledge about the faults that are to be 

exposed. However, in experiments with known mutants it 

serves as upper bound for improvements that can be 

achieved with prioritization. 
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3 Using model checking to determine prioritization 

 

In this section we show how the prioritization methods 

presented in the previous section can be performed in 

practice. As mentioned, we use model-checkers for 

prioritization. In order to do so it is necessary to re-

formulate test-cases as models, which allows analysis with 

regard to certain properties. This can be easily done by 

basing the transition relation of all variables on a special 

state-counting variable, as suggested by Ammann and 

Black [1]. As an example, assume a simple test-case 

t = {(x = 1, y = 0), (x = 0, y = 1), (x = 1, y = 1)}. 

Using the input language of the model-checker 

NuSMV [5] which we used for our experiments, the test-

case can be expressed as: 

 
 

3.1 COVERAGE PRIORITIZATION  

 

Model-based coverage criteria can be expressed as trap 

properties [9, 10]. For each coverable item one such 

property is formulated, expressing that the item cannot be 

reached. For example, a trap property might claim that a 

certain state is never reached or that a certain transition is 

never taken. Challenging a model-checker with a model 

and a trap property results in a counter-example, which is 

a trace illustrating how the item described by the trap 

property is reached. This principle is used for test-case 

creation, where it automatically results in test-suites that 

achieve a given coverage criterion. It is also used to 

measure the coverage of test-suites. The test-cases are 

converted to models as described above, and then the 

model-checker is challenged with the resulting models and 

the trap properties. For each trap property that results in a 

counter-example it is known that the test-case covers the 

according item.  

While for overall coverage measurement it is sufficient 

to check how many trap properties are violated, this can 

easily be extended such that each test-case is checked 

against all trap properties. That way the overall coverage 

of each test-case can be determined. This information can 

be used in order to sort test-cases according to their 

coverage, either totally or additionally. The prioritization 

works as follows: 

1) Create models from test-cases. 

2) Create trap properties TP from coverage criterion. 

3) for each test-case model t do. 

4) model-check t against TP. 

5) each trap resulting in a counter-example is covered. 

6) end for 

7) sort test-cases by number of covered traps. 

 

3.2 FEP PRIORITIZATION 

 

Fault exposing prioritization is based on mutation analysis. 

Model and specification mutation was introduced by 

Ammann and Black [11]. The ability to expose faults can 

be measured as the mutation score of a test-case. 

With model-checkers, this can be done in two ways. 

One option is to create mutants of a given model, and then 

symbolically execute the test-cases against these models 

by combining the mutant model and the test-case model, 

using the test-case values as input-values for the mutant. A 

mutant is detected if the model-checker returns a 

counterexample when queried whether the output values 

of mutant and test-case are equal along the test-case. 

Unlike coverage based methods, this requires the model-

checker to use the actuOrial model in addition to the test-

case model. If the model is complex, then this process is 

less efficient than the coverage based method. 

The alternative is to reflect the transition relation of the 

model as special properties [12]. Each reflected property 

refers to one variable. For each possible transition a 

variable can take, there is one such property. It consists of 

the transition condition and makes an assertion about the 

value of the variable in the next state. These reflected 

properties can then be mutated instead of the original 

model. When checked against the original model the 

mutated properties result in efficient test-suites [2]. A 

mutation score can be efficiently calculated by checking 

these properties against the test-case models. This 

prioritization is therefore identical to coverage based 

prioritization apart from the use of mutated reflected 

properties instead of trap properties. 

 

3.3 PROPERTY PRIORITIZATION 

 

Property prioritization uses the concept of property 

relevance. A test-case is relevant to a property if the 

execution of the test-case can theoretically lead to a 

violation of the property. As presented in [13], property 

relevance can be determined with the aid of a model-

checker by symbolically executing the test-case against a 

modified model which is allowed to take one single 

erroneous transition. The model checker then efficiently 

determines if a single erroneous transition is sufficient in 

order to reach a property violating state during the test-case 

execution. This process has to be repeated for each test-

case. 

1) Create modified model M  from model M . 

2) Create models from test-cases. 

3) for each test-case model t do. 
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4) Combine t and M  such that M  takes input values 

from t instead of the environment. 

5) Model-check M  against all requirement properties. 

6) t is relevant to each property causing a counter-example. 

7) end for 

8) Sort each test-case by relevance. 

While the complexity of this evaluation process can be 

higher than for coverage or reflection based methods, it is 

only necessary to challenge the model-checker once with 

each test-case, so this is still significantly more efficient 

than the determination of the mutation score using 

symbolic execution would be. Once the property relevance 

of each test-case has been determined, this information can 

be used in order to calculate a total or adding prioritization 

for the test-cases. 

 

3.4 OPTIMAL PRIORITIZATION 

 

The optimal execution order of a test-suite with regard to 

a set of mutants is calculated with a greedy algorithm that 

successively adds the test-case next that detects the most 

yet undetected mutants. 

 

4 Prioritizing test case at creation 
 

Each test-case is assigned an importance value, initially 1. 

If a test-case is a prefix of another test-case or equal to it, 

the importance of this other test-case is increased. If a test-

case subsumes other test-cases, then its importance is the 

sum of the subsumed test-cases plus 1. 

1) while t =ceate next test-case do 

2) importance of t =1 

3) if :t T t t    then 

4)  increase importance of t  by 1 

5) else if :t T t t    then 

6)  increase importance of t  by 1 

7) else if :t T t t    then 

8) for all :t T t t    do 

9)  replace t with t  in T  

10) increase importance of t with importance of t   
11) end for 

12) else 

13)  inset t  in T  

14) end if 

15) end while 

16) sort test-cases by importance 

When creating test-cases automatically it is often the 

case that redundant test-cases are created. If a new test-

case is a prefix of another test-case it is sufficient to retain 

the subsuming, longer test-case. If a new test-case 

subsumes other test-cases it is sufficient to retain the new 

test-case. Redundant test-cases are usually discarded. 

However, this redundancy information can also be used to 

prioritize test-cases. If a test-case or part of it is created 

more than once, this can be seen as an indication that this 

test-case is more important than other test-cases. With this 

information prioritization can be performed without post-

processing of the test-suite. 

 

5 Experimental results for three crucial embedded 

systems 

 

This section presents the results of an empirical evaluation 

for three security-critical embedded systems aiming to 

show that model-based test-case prioritization results in a 

noticeable performance improvement. We also want to 

analyze the newly defined property coverage techniques in 

comparison to well-known techniques. Finally we want to 

determine whether prioritization at test-case generation 

time results in a measurable improvement. 

 

5.1 APFD 

 

In order to quantify the efficiency gains achieved with a 

certain test-case prioritization, the metric APFD was 

introduced by Rothermel et al. [13, 14]. This metric is the 

weighted average percentage of faults detected over the 

life of a test suite. The APFD of a test suite T consisting n 

test cases and m mutants is defined as: 

1 2 3 1
1 mTF TF TF TF

APFD
nm nm

   
   . (2) 

Here, TFi is the first test-case in ordering T0 of T which 

reveals fault i. We use this metric in order to compare the 

different prioritization techniques. 

 

5.2 EXPERIMENT SETUP 

 

The evaluation is based on a set of three examples. Each 

example consists of an SMV-model and specification. 

Different model-checker based methods (various coverage 

criteria, different mutation operators, property based 

methods) are used in order to create 23 different test-suites 

for each model. For each model a set of mutants is created. 

Unlike for program mutation, a model-checker can 

efficiently determine whether a model mutant is equivalent 

to the original or not. The APFD values for each of the test-

suites is calculated using the subset of the in-equivalent 

model mutants that can be detected by the test-suite. Table 

1 sums up the results of the test-case generation and the 

numbers of detected mutants. Only detectable mutants are 

relevant for the determination of the APFD value, as the 

test-case execution order has no influence on undetectable 

mutants. 

Car Control (CA) is a simplified model of a car control. 

The Safety Injection System (SIS) example was 

introduced in [3] and has since been used frequently for 

studying automated test-case generation. Environmental 

Control (CC) is based on [12]. In order to validate the 

method we also use a set of 25 erroneous mutant 

implementations for the Cruise Control example 

applications written by Jeff Offutt. 
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TABLE 1 Test-suite statistics 

Example 
CA SIS EC 

Avg Max Avg Max Avg Max 

Test Cases 51 243 22 85 35 246 
Mutants 264 311 265 339 535 732 

 

5.3 RESULTS 

 

Following the tradition of previous papers about test-case 

prioritization we use box-plots to illustrate the results of 

the APFD analysis. The box-plots illustrate minimum, 

maximum, median and standard deviation for each of the 

used prioritization methods. As can be seen in Figures 1, 3 

and 4, there is still a gap between all prioritization 

techniques and the optimal prioritization. 

FIGURE 1 APFD of cruise control model 

 
FIGURE 2 APFD of cruise control implementation 

 

However, there is an improvement clearly visible 

compared to the random sorting of the test-cases and the 

original sorting, as provided by the test-case generation 

algorithm. Figure 6 lists the average APFD values for all 

examples and methods in a concise manner. The 

improvement is not always as significant as reported in 

previous works. This is probably because we used test-

suites of different sizes, and the improvement is not quite 

so obvious for large test-suites. In general, a large amount 

of the mutants is detected with the first couple of test-cases 

(Figure 5), yet the remaining test-cases and mutants can 

distort the APFD value, if there are many test cases. 

Nevertheless, an improvement is visible. Figure 2 

illustrates the APFD values for the same test-suites (except 

the optimal one) as in Figure 1, executed with the 25 

erroneous implementations of Cruise Control. The values 

are comparable and we conclude that model-based 

prioritization is also valid for real implementations. 

 
FIGURE 3 APFD of environmental system 

The prioritization performed at test-case generation 

time (labelled presorted in the figures) is clearly better than 

random ordering, however there is still a gap between 

presorted test-suites and post-processing prioritization. 

This gap is also visible in Figure 5. Interestingly, the 

presorted test-suites performed better than most other 

prioritization techniques during the evaluation on the 

cruise control implementations. In general we can 

conclude that prioritization at test-case generation is 

definitely useful, especially as it only requires negligible 

additional computational costs. 

There are only minor differences between the various 

prioritization techniques. In general, those techniques that 

use adding sorting perform slightly better than those with 

total sorting. Property prioritization performs good (regard 

also Figure 5), in fact it sometimes outperforms coverage 

based prioritization techniques. 

However, this case study does not reflect on the quality 

of the specification. It is conceivable that a specification 

consisting of more and better properties will result in better 

property based prioritization.  

FIGURE 4 Fault detection rates for environmental control example 

While model-checkers in general are prone to 

performance problems this is not a problem for 

prioritization, as the state space of test-case models is 

usually significantly smaller than that of related functional 

models. 
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6 Conclusion 

 

In this paper we have demonstrated how model-checkers 

can be used for test-case prioritization for the embedded 

systems of environmental control.  

This makes it possible to efficiently apply prioritization 

when creating test-cases with model-checkers. We adapted 

several well known prioritization methods originally based 

on source code to models. In addition we introduced new 

property based prioritization methods. Finally, we showed 

that test-case prioritization can be performed automatically 

during test-case generation, without post-processing. 
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