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Abstract 

Wavelet transforms via lifting scheme provides a general and an adaptive flexible tool for the construction of wavelet 

decompositions and perfect reconstruction filter banks. According to the construction of the lifting wavelet transforms, the optimal 

filter design method for the adaptive update wavelet transform is proposed by the authors. The optimal update filter coefficients can 

be acquired based on the Minimum Mean Square Error Criteria (MMSE) in the algorithm. In prediction process, take the case of 

LeGall 5/3 wavelet, we propose an adaptive version of this scheme that it allows perfect reconstruction without any overhead cost for 

the smooth signals with the jumps. Compare with other wavelet transform scheme, simulation results show that optimal adaptive 

wavelet transform proposed by this paper can achieve the detail signals being zero (or almost zero) at big probability and the better 
linear approximation for the piecewise continuous signal. 
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1 Introduction 

 

Because of the better temporal and frequency properties, 

discrete wavelet transforms (DWT) have wide application 

in signal and image processing [1, 2]. It is well known 

that wavelet linear approximation (i.e. truncating the high 

frequencies) can approximate smooth functions very 

efficiently: it can achieve arbitrary high accuracy by 

selecting appropriate wavelet basis, it can concentrate the 

large wavelet coefficients in the low frequencies, and it 

has a multiresolution framework and associated fast 

transform algorithms. Standard wavelet linear 

approximation techniques cannot achieve similar results 

for functions which are not smooth. The jumps generate 

large high frequency wavelet coefficients and thus linear 

approximation cannot get the same high accuracy near 

the points of discontinuity as in the smooth regions. In 

fact, the jump points generate oscillations which cannot 

be removed by mesh refinement.  

To overcome these problems within the standard 

wavelet transform framework, an adaptive ENO-wavelet 

transform has been presented in [3], which do not 

generate large high frequency coefficients near the jumps, 

but the methods use one extra bit for each stencil near the 

discontinuities to indicate it contains a discontinuity. 

Wavelet transforms based on lifting schemes have 

achieved large recognition in the last years [4]. One of the 

major reasons for this success is their flexibility: they can 

be used to construct linear filter banks, but also non-

linear ones [5], e.g. using morphological filter [6].The 

lifting framework has lead to designing of adaptive and 

nonlinear wavelet transforms recently [7-12]. The lifting 

scheme consists of 3 main steps: Split, Prediction and 

Update. In [7, 8], an adaptive prediction step, where the 

adaptive switching between short and long filters based 

on the local edges of the input signal has been 

considered. In this case, the update lifting step, which is 

fixed, precedes the adaptive prediction step, so that the 

preserving of the running average of the input signal is 

not affected by the adaptive prediction. In [9, 10], an 

adaptive update lifting scheme followed by a fixed 

prediction has been developed. The main objective of this 

method is to active adaptive smoothing in the low pass 

signal. However, the wavelet coefficients, i.e. the high 

pass subbands are affected by the adaptive update 

process. In [9, 10], the perfect reconstruction condition 

for the filter coefficients was presented in the algorithm, 

but the method for determining the filter coefficient was 

not proposed. The optimal filter design method for the 

adaptive update wavelet transform is proposed by the 

authors. The optimal filter coefficients can be acquired 

based on the Minimum Mean Square Error Criteria 

(MMSE) in the algorithm. 

In both above cases, either the adaptive update 

process or the adaptive prediction process has been 

adopted in the adaptive wavelet transform frameworks 

based on lifting schemes. Based on the adaptive lifting 

scheme with perfect reconstruction presented by G. Piella 

and the author’s previous research [9, 13], this paper 

proposed the improved optimal adaptive wavelet 

transform (i.e. optimal adaptive update process and 

adaptive prediction process) without using extra 

additional information, which can achieve the better 

linear approximation for the piecewise continuous 

signals. 
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2 Optimal adaptive wavelet transform 

 

In general, lifting splits a signal into two sub samples, 

followed by at least two lifting steps, Prediction and 

Update. A general lifting scheme may comprise any 

sequence of basic lifting steps being alternatively of 

prediction and update type. For the adaptive wavelet 

transform based on lifting scheme, the wavelet transform 

framework (Fig. 1) by first updating and then predicting 

has been presented in [7, 8], so the update-then-predict 

lifting scheme has been adopted in this paper. 

Considering the previous researches of the adaptive 

wavelet transforms, the optimal adaptive wavelet 

transform (i.e. adaptive update and prediction process) 

based on the lifting schemes is presented. 

 

2.1 ADAPTIVE UPDATE 

 

In [9, 10], an adaptive wavelet transform framework had 

been provided for building perfect reconstruction filter 

banks, which did not require any additional bookkeeping 

to enable inversion. In this approach, a binary map is 

constructed based on the gradient information and the 

update operator is selected according to this map. 

Considering the better features of this approach, the 

update operator presented by G. Piella has been adopted 

in the update process of the double adaptive wavelet 

transform proposed by this paper. The concrete 

algorithms in [9, 10] has been introduced as follows: 

Firstly, define the gradient vector at location n as 

(v(n),w(n))=(x(n)-y(n-1),y(n)-x(n)), In Fig.2, D is the 

decision set according to the value of x and y. 

D(x,y)(n)=d(s(n)), where s(n)=|v(n)|+|w(n)|.  

For every possible outcome d∈D of the decision map, 

we have a different update operator Ud and addition ⊕d. 

Thus, the analysis step of our adaptive update lifting 

scheme looks as follows: 

'( ) ( ) ( )( )
nd dx n x n U y n  , (1) 

where ( , )( )nd D x y n  is the decision at location n. 

We denote the subtraction which inverts ⊕d by ○,一
d. At synthesis we can invert (1) by 

'( ) ( )x n x n ○,一d ( )( )
ndU y n , (2) 

We assume that the update operator Ud is a 2-tap 

filter and that ⊕d is the standard addition followed by 

some scale factor. Now, the analysis step in (1) is of the 

form 

'( ) ( ) ( 1) ( )
n n nd d dx n x n y n y n      , (3) 

And the synthesis step (presumed that nd  is known 

and d ≠0) is given by 

'( ) 1/ ( ( ) ( 1) ( ))
n n nd d dx n x n y n y n      , (4) 

where , ,
n n nd d d    are the lifting coefficients of the 

wavelet transforms. In order to have perfect 

reconstruction it is necessary that d d d     is 

constant for all d∈D. Based on a simple threshold 

criterion, to be precise, we assume that D={0,1} and that 

the function d in D(x, y)(n)=d(s(n)) has the form 

1
( )

0

if s T
d s

if s T


 


, where T is the 

gradient threshold. 

 
FIGURE 1 Update-then-prediction scheme 

 
FIGURE 2 Adaptive update scheme 

We have ' '( ) ( )d s d s  with 'T T  if and only if 

0 00 , 1    and either 1 1, 0    or 1 1, 1    

If the above conditions hold, then the reconstruction 

algorithm consists of the following steps: 

 Compute ' ' 's x y z x    , 

 Led  'd s T   and put d   and d  , 

 Compute x from 
'

1

x y z
x

 

 

 


 
, 

where (x,y,z) expresses (x(n),y(n-1),y(n)). The previous 

reconstruction algorithm based on the adaptive update 

process can be founded in [9, 10].  

The perfect reconstruction condition for the filter 

coefficients is presented in [9, 10], but the method for 

determining the filter coefficient was not proposed in [9, 
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10]. For most of the signal, the smooth region is the main 

part of the signal. So the optimal wavelet transform filter 

for the smooth region was researched, and the optimal 

filter coefficients can be acquired based on the Minimum 

Mean Square Error Criteria (MMSE). The 2-level lifting 

wavelet transform was illustrated in Fig.3. In this lifting 

scheme, the mean filter was used in the prediction 

process. The update wavelet filter coefficients are 

0 1 2( , , )a a a , and then updated data are given by 

'
1 0 2 1 1 2N N N NX a X a X a X     , (5) 

'
1 0 1 1 2 2N N N NX a X a X a X     , (6) 

Put ' ' '
1 1( ) / 2N N NX X X   , '

N N Ne X X  , then 

' 0 2 1 1 1 2 2( ) ( ) ( )

2

N N N N N N
N

a X X a X X a X X
X        

 , (7) 

If   is the mean value, where 1i

i

a  , we can 

rewrite (7) as follow 

' 0 2 1 1 1 2 2

2
0 2 1 1 1 2 2

0

2

0 2 1 1 1 2 2

0

0 2 1 1 1 2 2 0 1 2

0

( ) ( ) ( )

2

( ) ( ) ( )
*

2

( ) ( ) ( ) 2 *

2

( ) ( ) ( ) 2( )

2

N N N N N N
N

N N N N N N
i

i

N N N N N N i

i

N N N N N N

a X X a X X a X X
X

a X X a X X a X X
a

a X X a X X a X X a

a X X a X X a X X a a a

a

 







   

   



   



   

    
  

    
 

     



       








2 1 1 1 2 2( ) ( ) ( )

2

N N N N N NX X a X X a X X                  

. (8) 

Put '
i iX X   , then  

' 0 2 1 1 1 2 2( ) ( ) ( )

2

N N N N N N
N

a X X a X X a X X
X        

 , (9) 

Let us simplify the Equation (9) through Omitting the 

symbol ~ above the iX . The Equation (9) can be given 

by 

' 0 2 1 1 1 2 2( ) ( ) ( )

2

N N N N N N
N

a X X a X X a X X
X        

 , (10) 

NX  Mean error (that is the Variance) is  ' 2( )N NE X X , 

where  E   is the mathematical expectation. In order to 

attain the value of the filter coefficients,  ' 2( )N NE X X  

must be the minimum. The optimal wavelet filter 

coefficients 0 1 2( , , )a a a  can be acquired by using the 

partial differential equations (PDE) for  ' 2( )N NE X X . 

For wavelet filter coefficient 0a , the partial differential 

equation is as below.  

 

 

2' 2

0 2 1 1 1 2 2

0 0

20 2 1 1 1 2 2

2 0 2 2 2

1

( ) ( ) ( ) ( )

2

( ) ( ) ( )
2 *

2 2

* * ( * 2 * * )

2 2 4

2

N N
N N N N N N

N

N NN N N N N N
N

N N N N N N N N N N

E X X a X X a X X a X X
E X

a a

X Xa X X a X X a X X
E X

X X X X a X X X X X X

a
E

   

   

   

          
       

 

       
    

   

 
  

  1 1 2 1 1 2

2 2 2 2 2

( * * * * )
0

4

( * * * * )

4

N N N N N N N N

N N N N N N N N

X X X X X X X X

a X X X X X X X X

     

   

 
 
 

   
  

 
   

 
 

. (11) 

The covariance for the signal iX  has the form 

 *ij i jR E X X , 1,2,3,... 1i N  . 

Due to ( * ) (0)N NE X X R , 2( * ) (2)N NE X X R  , 

2 2( * ) (0)N NE X X R   , 
1( * ) ( 1)N NE X X R   , 

1 2( * ) (1)N NE X X R   , 1( * ) (1)N NE X X R  , 

1 2( * ) (3)N NE X X R   , 2( * ) (2)N NE X X R  , 

2 2( * ) (4)N NE X X R   , where ( 1) (1)R R  , 

( 2) (2)R R  , the partial differential equation for 0a  is 

as below. 

0 1

2

(3) 3
[ (0) (2)]* [ (1)]*

2 2

(0) (4)
[ (2) ]* (0) (2)

2 2

R
R R a R a

R R
R a R R

  

    

, (12) 

For wavelet filter coefficient 1a , the partial 

differential equation is as below.  

 

 

' 2 2

0 2 1 1 1 2 2

1 1

1 10 2 1 1 1 2 2

1 1 0 2 1 2 1

( ) ( ) ( ) ( )

2

( ) ( ) ( )
2 *

2 2

* * ( * * *

2 2

2

N N
N N N N N N

N

N NN N N N N N
N

N N N N N N N N N N

E X X a X X a X X a X X
E X

a a

X Xa X X a X X a X X
E X

X X X X a X X X X X X

E

   

    

     

          
        

       
    

   

 
 

 

1 1

1 1 1 1 1 1 1 1 1

2 1 1 2 1 2 1

* )

4

( * * * * )
0

4

( * * * * )

4

N N

N N N N N N N N

N N N N N N N N

X X

a X X X X X X X X

a X X X X X X X X

 

       

     

 
 
 

   
   
 

   
 
  . (13) 

Due to 
1( * ) (1)N NE X X R  , 

1( * ) ( 1)N NE X X R   , 

2 1( * ) ( 1)N NE X X R    , 
2 1( * ) ( 3)N NE X X R    , 

1( * ) (1)N NE X X R  , 
1( * ) ( 1)N NE X X R   , 

1 1( * ) (0)N NE X X R   , 1 1( * ) ( 2)N NE X X R    , 

1 1( * ) (2)N NE X X R   , 
2 1( * ) (3)N NE X X R   , 

2 1( * ) (1)N NE X X R   , where ( 1) (1)R R  , ( 2) (2)R R  , 

( 3) (3)R R  , the partial differential equation for 1a  is as 

below. 
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0 1 3

[3 (1) (3)] [3 (1) (3)]
* [ (0) (2)]* * 2 (1)

2 2

R R R R
a R R a a R

 
    . (14) 

For wavelet filter coefficient 2a , the partial 

differential equation is as below.  

 

 

' 2 2

0 2 1 1 1 2 2

2 2

20 2 1 1 1 2 2

2 0 2 2 2

( ) ( ) ( ) ( )

2

( ) ( ) ( )
2 *

2 2

* * ( * * * *

2 2

2

N N
N N N N N N

N

N NN N N N N N
N

N N N N N N N N N N N N

E X X a X X a X X a X X
E X

a a

X Xa X X a X X a X X
E X

X X X X a X X X X X X X X

E

   

   

   

          
        

       
    

   

  
 

 

2

1 1 1 2 1 1 2

2 2 2 2 2

)

4

( * * * * )
0

4

( * * * * )

4

N N N N N N N N

N N N N N N N N

a X X X X X X X X

a X X X X X X X X



     

   

 
 
 

   
   
 

   
 
  . (15) 

Due to 
2 2( * ) ( * ) (0)N N N NE X X E X X R   , 

2 2( * ) ( * ) ( 2)N N N NE X X E X X R    , 

2( * ) (2)N NE X X R  , 
2 2( * ) ( 4)N NE X X R    , 

1 2( * ) ( 3)N NE X X R    , 
1( * ) ( 1)N NE X X R   , 

1( * ) (1)N NE X X R  , 

1 2( * ) ( 1)N NE X X R    , 
2( * ) ( 2)N NE X X R   , where 

( 1) (1)R R  , ( 2) (2)R R  , ( 3) (3),R R   

( 4) (4)R R  , the partial differential equation for 2a  is as 

below. 

0 1 2

[2 (2) (0) (4)] [3 (1) (3)]
* * [ (0) (2)]*

2 2

(0) (2)

R R R R R
a a R R a

R R

  
  

 

, (16) 

Equation (10), (12) and (16) are the equation group, 

In order to acquire the solution of equations, that is the 

filter coefficient 0 1 2( , , )a a a , the signal covariance 
ijR  

must be known. Using the signal sample value, 
ijR  can 

be obtained, so the optimal filter coefficients can also be 

acquired. 

So far, the design method for the optimal wavelet 

filter had been carefully illustrated in this section. In the 

next section, the experiment results will be shown. 
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FIGURE 3 2-level lifting wavelet transform 
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FIGURE 4 Four modes 

 

2.2 ADAPTIVE PREDICTION 

 

Because of the update-then-prediction lifting scheme 

adopted in this paper, the update process cannot be 

affected by the prediction process using the adaptive 

transform scheme. In order to implement adaptive 

prediction algorithm, there are two crucial points in 

designing wavelet transform scheme: The first is to detect 

the jumps in the signal. In order to avoid generating extra 

edge information, we use the updated data for detecting 

jumps. This scheme is reversible. When the data has a 

jump, the position of this jump is preserved after 

updating. The second is how to use one-sided data near 

jumps to avoid oscillations. The jumps generate large 

high frequency wavelet coefficients if we adopt the same 

wavelet filter as the smooth region. So the jumps can be 

predicted by the left or the right data of the jumps in this 

paper. Assuming that 
2 1i 

 is the jump (predicted 

point), 2i  is its left side data (updated data) and 2 2i   

is its right side data (updated data), the three-point 

relationship can be summed up the four modes in figure 

4. The four modes can be introduced carefully as follows: 

 

2.2.1 Mode 1 

 

If  2 2 2 2 1 2 2 2, / 2i i i i i         , the relative of 

2i , 2 1i  , 2 2i   can be summed up Mode 1 scheme. 

For this scheme, '
2 1i   is the jump of the prediction data, 

and '
2 2i   is the jump of the updated data. For the LeGall 

5/3, the lifting scheme can be shown in figure 5, so 

update-prediction process as follow: 

Update: '
2 2 2 1 2 1( ) / 4i i i i        

Prediction: ' ' '
2 1 2 1 2 2 2( ) / 2i i i i         

If 2ie  denotes the mean linear error of the updated data 

the following equations can be acquired. 

' ' '
2 2 2 2 2 2( ) / 2i i i ie       , (17) 
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' ' '
2 2 2 2 2 2 4( ) / 2i i i ie        , (18) 

For the mode 1, '
2i  can be updated in the smooth 

fields, so ' '
2 2 2i i   .for the Equation (17) can be written 

as follows 

' '
2 2 2 2( ) / 2i i ie     . (19) 

Through decomposing of the Equation (18), equation 

(20) can be acquired.  

' ' ' '
2 2 2 2 2 2 2 2 4( ) / 2 ( ) / 2i i i i ie           . (20) 

In the update process, '
2 2i   can be updated by the 

value of the 2 1i  , the update process as follows: 

'
2 2 2 2 2 1 2 3( ) / 4i i i i         , (21) 

'
2 4 2 4 2 3 2 5( ) / 4i i i i         . (22) 

For the mode 1, 2 2i   and 2 4i   locate the same 

smooth fields, that is 2 2 2 4i i   . 2 3i   and 2 5i   

locate the same smooth fields, that is 2 3 2 5i i   . 

However, 2 1i   and 2 3i   locate at two sides of the 

jump, and 2 1 2 3i i   , according to equation (21) and 

(22), equation (23) can be acquired. 

' '
2 2 2 4i i   . (23) 

According to equation (19), (20) and (23), 

2 2 2i ie e   and 2 2 2* 0i ie e    can be known, we can 

get the prediction equations for this scheme 
'
2 1 2 1 2i i i     , where '

2 1i   is the predicted 

high frequency coefficient. 
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FIGURE 5 2-level lifting wavelet transform 

 

2.2.2 Mode 2 

 

If  2 2 2 2 1 2 2 2, / 2i i i i i         , the relative of 2i , 

2 1i  , 2 2i   can be summed up Mode 2 scheme. For this 

scheme, 
2 1i 

 is the jump of the prediction data, and 

2 2i   is the jump of the updated data. In the update 

process, 2 2i   can be affected by the value of 2 1i  . 

When we calculate the linear prediction error of the 

updated data, the left prediction errors of 
2 2i 

 (that is 

2 4i 
 point) are usually lager than that of 

2i . Based on 

deduction method as mode 1, we can get the prediction 

equations for this scheme 
'

2 1 2 1 2i i i     , 

where 
'
2 1i   is the predicted high frequency coefficient. 

 

2.2.3 Mode 3 

 

If  2 2 2 2 1 2 2 2, / 2i i i i i         , the relative of 
2i , 

2 1i 
, 

2 2i 
 can be summed up in Mode 3 scheme. For 

this scheme, 2 1i   is the jump of the prediction data, 

and 2 2i   is the jump of the updated data. In the update 

process, 
2i  can be affected by the value of 

2 1i 
. When 

we calculate the linear prediction error of the updated 

data, the right prediction errors of 2i  (that is 2 2i   

point) are usually lager than that of 2 2i  . Based on 

deduction method as mode 1, we can get the prediction 

equations for this scheme 
'

2 1 2 1 2 2i i i      , where 

'

2 1i   is the predicted high frequency coefficient. 

 

2.2.4 Mode 4 

 

If  2 2 2 2 1 2 2 2, / 2i i i i i         , the relative of 
2i , 

2 1i 
, 

2 2i 
 can be summed up in Mode 4 scheme. For 

this scheme, 
2 1i 

 is the jump of the prediction data, and 

2 2i 
 is the jump of the updated data. In the update 

process, 2i  can be affected by the value of 
2 1i 

. When 

we calculate the linear prediction error of the updated 

data, the right prediction errors of 2i  (that is 2 2i   

point) are usually lager than that of 
2 2i 

. Based on 

deduction method as mode 1, we can get the prediction 

equations for this scheme 
'

2 1 2 1 2 2i i i      , 

where 
'

2 1i   is the predicted high frequency coefficient. 

According to the previous analysis, the adaptive 

prediction algorithm consists of the following steps: 

For each index i: 

 Calculate the linear error 
2ie  sequence of the 

update data 
2i sequence from 

2 2 2 2 2 2( ) / 2i i i ie        
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 For the 
2ie  sequence, the multiplying value of 

the two adjacent numbers is calculated, that is 

the value of 
2 2 2i ie e  .  

If this value is negative, 
2 1i 

 are the jumps, 

then the next step will be performed. 

Else '

2 1 2 1 2 2 2( ) / 2i i i i        , we get the 

high frequency coefficient sequence. 

 If the 
2i  is the jump of the updated data, the 

value of 
2 2ie 

 is larger. Otherwise, the value 

of 
2 4ie 

 is larger. Comparing with the value 

between 
2 2ie 

 and 
2 4ie 

, the prediction 

algorithm using the left side data or the right 

side data of the jump can be determined. 

If 
2 2 2 4i ie e   then 

'

2 1 2 1 2i i i     . 

Else If 2 2 2 4i ie e   then 

'

2 1 2 1 2 2i i i       

Else 
'

2 1 2 1 2 2 2( ) / 2i i i i        . 

Through the previous discussion, we know that the 

adaptive prediction algorithm can be reconstructed 

without using extra additional information. The inverse 

transform algorithm is the inverse process of the forward 

wavelet transform. 

 

3 Simulation results 

 

Next, we consider a piecewise smooth function defined 

by 

2

0 0 0.2

50 5 0.2 0.4

( ) 10sin(4 0.8 ) 1 0.4 1.1

5 100 1.1 1.6

0 1.6 2.0

x

x

x x

f x x x

e x
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 

 


   


    
   


 

. 

Fig.6 shows the function ( )f x . In order to study on 

the performance of the optimal adaptive wavelet 

transform, the five different wavelet transform scheme 

are listed as follows: 

Non-adaptive wavelet transform: Update-then-

Prediction scheme. The coefficient (1/4, 1/2, 1/4) for the 

wavelet filter is chosen in the update process, and the 

filter is the same as that of (5, 3) wavelet in the prediction 

process. 

Adaptive update wavelet transform: Adaptive 

update and non-adaptive prediction scheme. We adopt the 

adaptive update scheme proposed in [9, 10]. The filter 

coefficients are 0 1 2( 1/ 4, 1/ 2, 1/ 4)a a a    for 

smooth region, and the filter coefficients are 

0 1 2( 0, 1, 0)a a a    for the jumps. The filter is the 

same as that of (5, 3) wavelet in the prediction process. 

Adaptive prediction wavelet transform: update and 

adaptive prediction scheme. The filter coefficients are 

0 1 2( 1/ 4, 1/ 2, 1/ 4)a a a    in the update process. We 

adopt the adaptive prediction algorithms proposed by this 

paper. 

Adaptive wavelet transform: Adaptive update and 

adaptive prediction scheme. We adopt the adaptive 

update scheme proposed in [9, 10]. The filter coefficients 

are 
0 1 2( 1/ 4, 1/ 2, 1/ 4)a a a    for smooth region, and 

the filter coefficients are 
0 1 2( 0, 1, 0)a a a    for the 

jumps. The adaptive prediction algorithms proposed by 

this paper are chosen. 

Optimal adaptive wavelet transform: Optimal 

adaptive update and adaptive prediction scheme. we 

adopt the optimal adaptive update scheme proposed by 

this paper. Through calculating the covariance ijR  of the 

tested signal, the filter coefficients 

0 1 2( 0.4990, 0.3775, 0.1241)a a a    are acquired. 

Considering the perfect reconstruction condition for the 

filter in [9, 10], we selected 

0 1 2( 5 /10, 4 /10, 1/10)a a a    as the optimal 

coefficients of wavelet filter for smooth region, and the 

filter coefficients are the filter coefficients 

0 1 2( 0, 1, 0)a a a    for the jumps. The adaptive 

prediction algorithms proposed by this paper are chosen. 

Using the non-adaptive wavelet transform scheme, 

one level wavelet decomposition for the f(x) is shown in 

Fig.7. The left part corresponds to the low frequency 

coefficients and the right part the high frequency 

coefficients. Because we get the similar low frequency 

coefficients using the wavelet transform scheme listed in 

this chapter, the transformed high frequency coefficients 

will be researched. In Fig.8, 9, 10 and 11, we present the 

adaptive prediction, adaptive update, adaptive wavelet 

and optimal adaptive wavelet transform 1-level 

decomposition high frequency coefficients respectively. 

For the adaptive prediction or adaptive update wavelet 

transform scheme, we notice that there are some large 

high frequency coefficients near the discontinuities. On 

the other hand, no large high frequency coefficients are 

present in the optimal adaptive wavelet transform. This 

illustrates that the optimal adaptive wavelet coefficients 

have better distribution than other wavelet transform 

listed in this paper, i.e., no large coefficients in the high 

frequencies and the energy is concentrated in the low 

frequency end. According to the signal energy calculation 

formula: 
1

n

i i

i

SignalEnergy X X


  , where 
iX  is the 

value of the signal sequence, the 1-level decomposition 

high coefficient energy of the different wavelet transform 

scheme listed in Table 1. From the table 1, the optimal 

adaptive wavelet transform has better energy 

concentration. The performances of this wavelet 

transform scheme meet the demand of the image 

compression. 
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FIGURE 6 A piecewise smooth signal 

Using the wavelet transform scheme listed in this 

chapter, the different wavelet linear approximations are 

shown in Figure12, 13, 14, 15 and 16 respectively. From 

the Figure 12, we notice that the non-adaptive wavelet 

linear approximation generate the oscillations near the 

discontinuity (Arrow shows the location in figure). In 

Figure 13, 14 and 15, it is evident that these schemes can 

reduce the oscillations near the discontinuity (Arrow 

shows the location in figures). In Fig. 16, the oscillations 

near the discontinuity can be basically eliminated. 

Comparing with the original signal f(x), the linear 

approximation has the smaller distortion. With studying 

on the optimal adaptive wavelet transform scheme, the 

simulation results demonstrate that it can eliminate the 

oscillations near the discontinuity, and has better linear 

approximation. 
 

TABLE 1 1-level decomposition high frequency coefficients energy of 

the different wavelet transform scheme 

Wavelet transform scheme Energy 

Non-adaptive wavelet transform 651.053 
Adaptive update wavelet transform 1.0413e+003 

Adaptive prediction wavelet transform 65.0251 

Adaptive wavelet transform 56.3078 

Optimal adaptive  wavelet transform 0.8065 
 

 
FIGURE 7 Non-adaptive wavelet 1-level decomposition for the 

piecewise smooth signal 

 
FIGURE 8 1-level decomposition high frequency coefficients for the 

adaptive prediction wavelet transform 

 
FIGURE 9 1-level decomposition high frequency coefficients for the 

adaptive update wavelet transform 

 
FIGURE 10 1-level decomposition high frequency coefficients for the 

adaptive wavelet transform 

 
FIGURE 11 1-level decomposition high frequency for the optimal 

adaptive wavelet transform 

 

 
FIGURE 12 1-level linear approximation for the non-adaptive wavelet 

transform 
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FIGURE 13 1-level linear approximation for the adaptive prediction 

wavelet Transform 

 
FIGURE 14 1-level linear approximation for the adaptive update 

wavelet Transform 

  
FIGURE 15 1-level linear approximation for the adaptive wavelet 

Transform 

 
FIGURE 16 1-level linear approximation for the optimal adaptive 

prediction wavelet transform 

 

4 Conclusions 

 

Based on the double adaptive wavelet transform proposed 

in this paper, the simulation results demonstrate that it 

has better linear approximation of the smooth piecewise 

function, and can also reduce the high frequency 

coefficients. At the same time, comparing with the 

algorithms in [13], the optimal adaptive wavelet 

transform can be implemented without sending any side 

information. A wavelet based image compression 

algorithm usually consists of three steps, namely 

transform, quantization and coding. Quantization refers to 

truncating the real valued wavelet coefficients into a 

finite set of fixed values so that they can be used in 

coding process. In this step, the small wavelet 

coefficients are usually quantized to zero. Therefore, the 

smaller wavelet coefficients a transform generates the 

better compression it achieves. The double adaptive 

wavelet transform presented by the authors meets the 

demand of image compression. How to use this algorithm 

together with quantization and coding steps to form 

complete image compression algorithms will be 

researched in the future. 

 

Acknowledgments 

 

This work was supported by Zhejiang Provincial Natural 

Science Foundation of China (No.Y1110632) and 

(LY12F01017), Supported by the construct program of 

the key discipline in Hangzhou. 

 

References 
 

[1] Ramu Satyabama, Annadurai 2013 Image compression using space 

adaptive lifting scheme Journal of Computer Science 7(11) 1704-10 
[2] Kaaniche M, Pesquet-popescu B, Pesquet J-C, Benazza-benyahia A 

2012 Adaptive lifting schemes with a global l1 minimization 
technique for image coding IEEE International Conference on 

Image Coding United states 

[3] Chan T F, Zhou H M 1999 Adaptive ENO-wavelet transforms for 

discontinuous functions, Technical Report 99-21, Dept. of Math, 
UCLA 

[4] Sweldens W 1997 The lifting scheme: a construction of second 
generation wavelets SIAM J. Math. Anal. 29(2) 511-46 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 71-79 Gao Guangchun, Xiong Kai, Zhao Shengying, Zhang Cui 

79 
Computer and Information Technologies 

 

[5] Zijiang Yang, Ligang Cai, Lixin Gao, Huaqing Wang 2012 
Adaptive redundant lifting wavelet transforms based on fitting for 

fault feature extraction of roller bearing Sensors 12 4381-98 
[6] Heijmans H J A M, Goutsias J 2000 Nonlinear multiresoution 

signal decomposition schemes. Part II: morphological wavelets 

IEEE Transaction on Image Processing 9(11) 1897-913 
[7] Claypoole R, Baraniuk R, Nowak R 1997 Nonlinear wavelet 

transforms for image coding In Proceedings of the 31st Asilomar 
Conference on Signals, Systems, and Computers 1 pp. 662 

[8] Claypoole R, Baraniuk R, Nowak R 1998 Adaptive wavelet 

transforms via lifting In Proceedings of the IEEE International 
Conference on Acoustics, Speech and Signal Processing, May 12-

15, Seattle, Washington 
[9] Piella G, Heijmans H J A M 2001 Adaptive lifting schemes with 

perfect reconstruction PNA-R0104, CWI, Amsterdam, February 28 

[10] Heijmans H J A M, Pesquet-Popescu B, Piella G 2002 Building 
nonredundant adaptive wavelets by update lifting PNA-R0212, 

CWI, Amsterdam, May 31 
[11] Abhayaratne G C K 2003 Spatially adaptive integer lifting with no 

side information for lossless video coding Picture Coding 

Symposium (PCS 03) pp.495-500 
[12] Yu Wu, Guoyin Wang, Neng Nie 2001 Adaptive lifting scheme of 

wavelet transforms for image compression Proceeding of SPIE, 
4391 on Wavelet Application III, pp. 154-160 

[13] Gao Guang-chun, Yao Qing-dong 2004 New method for 

calculating lifting coefficients of biorthogonal wavelet Journal of 
Zhejiang University: Engineering Science 38(12) 1665-8 (in 

Chinese) 

 
Authors  

 

Guangchun Gao 
 
Current position, grades: an associate professor of Zhejiang University City College.  
University studies: the PhD degrees in Communication and Information System from the Zhejiang University, in 2004.  
Scientific interests: compressed sensing, image processing and coding, and communication signal processing and system design. 

 

Kai Xiong 
 
Current position, grades: works for the Zhejiang University City College in Hangzhou. 
University studies: BSc degree from the Zhejiang University in 1999 and MSc and PhD degrees from the Zhejiang University in 2002 and 2005 
respectively, all in Optical Engineering 
Scientific interests: optical imaging, image processing, and optical measurement 

 

Zhao Shengying 
 
Current position, grades: works for the Zhejiang University City College in Hangzhou. 
University studies: BSc degree in department of Electrical Engineering from Zhejiang University in 1991 and MSc degrees in department of 
Information and communication engineering from Zhejiang University in 2006. 
Scientific interests: image processing and compressive sensing 

 

Zhang Cui 
 
Current position, grades: works for the Zhejiang University City College in Hangzhou. 
University studies: BSc degree in electronics and information engineering from the Northwestern Polytechnical University, Xi’an, China, and 
the MSc degree in weapon system and application in Engineering from the Northwestern Polytechnical University, China in 2003. 
Scientific interests: multimedia technology , image processing and Information Processing 

 


