
 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 143-150 Duan Kanghong, Zhang Hongxin, Song Shilin, Wang Peigang 

143 
Information and Computer Technologies 

 

Micro real-time pre-emption operating system for industry 
wireless sensor networks 

Kanghong Duan, Hongxin Zhang, Shilin Song, Peigang Wang* 

North China Sea Marine Technical Support Centre of  State Oceanic Administration, 22 Fushun Road,, Qingdao, China,266033 

Received 1 January 2014, www.tsi.lv 

Abstract 

Event-driven systems and thread-driven systems are two major design philosophy of operating system in wireless sensor networks. 

Systems based on multi-threaded are more timeliness than the event-driven systems, which can meet the requirements of time-critical 

tasks by means of task pre-emption, while systems based on event-driven are more energy efficient. Furthermore, μCOS-II is a 

classical system, which combines benefits in both systems. Therefore, our recent work we have shown that a micro real-time pre-

emption operating system has been proposed on the basis of μCOS-II. First of all, a clear hardware abstraction layer (HAL) is given 

to combine the kernel and hardware in the system architecture. Moreover, this system is more capable of fitting both sensor network 

design goals of energy efficiency and timeliness. We are dedicated to modify the existing system from the scheduling strategy and 

data structure aspects, which lead to the performance of the modified system largely improved. Above all, the performance of our 

operating system is better than the original μCOS-II and TinyOS from task switch time, FLASH usage and RAM usage perspectives. 

Keywords: Wireless Sensor Network, Operating System, Pre-emption, Improvement 

 

                                                           
*Corresponding author - E-mail: dkhkidd@163.com  

1 Introduction 

  

With the progress of sensor technology, communication 

technology and computer networking technology, WSN 

(Wireless Sensor Network) has been developed and 

improved rapidly. As one of the front fields, it brings us a 

lot of challenges, and the embedded operating system is 

one of them. 

The embedded operating system that we research on 

must have the key functions as task scheduling, I/O 

management, timer management and so on. At the same 

time, it should pay more attention to the professional filed 

to meet the need of WSN. 

Besides the general features in sensor networks, WSN 

has some its own features, which are important for the 

Industry WSN OS (Wireless Sensor Network Operating 

System). 

The capability of the hardware is limited. The WSN 

node usually takes AA battery as power supply, and its 

microcontroller usually is 8-bit or 16-bit. At the same 

time, many applications and services may be limited by 

its memory spaces. These limitations require the 

operating system to be small and efficient [1]. 

The network should be large-scale, self-organized, 

dynamic and reliable. The amount of the node is large 

and the network topology changes quickly. Therefore, the 

operating system should have good methods to enhance 

its haleness, fault-tolerance and self-repair [2]. 

Wireless sensor network has very strong application 

relativity, and different hardware platforms and software 

systems are needed under different application 

requirements [3]. So the operating system should be 

transplanted easily to meet the demands of different 

applications. 

Many researchers has designed some WSN operating 

systems with high practical applicability. Based on 

different scheduling strategies, they can been divided into 

two kinds [3]:  

 one is pre-emptive operating system oriented to 

hard real-time applications like MANTIS [4] and 

Contiki [5],  

 the other is non-pre-emptive operating system 

oriented to soft real-time applications like TinyOS 

[6,7]. But these operating systems still have some 

disadvantages. 

 

2 Study on μCOS-II 

 

2.1 THE KERNEL OF μCOS-II 

 

The kernel of μCOS-II is fully pre-emptive and real-time 

with multitask management; it can comparable on 

performance with most commercial kernels [8]. At the 

same time, it is only a Microkernel without many 

applications. Therefore, the architecture of it is easy to 

catch. FIGURE 1 shows the theoretical architecture of the 

kernel. 

Most of the kernel's code is written by C language, 

only a few of the processor specific code is written by 

assembly language. And thanks to the clear hierarchical 

structure, the kernel gets the portal and scalable features 

which is crucial for WSN. And, the processor must 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 143-150 Duan Kanghong, Zhang Hongxin, Song Shilin, Wang Peigang 

144 
Information and Computer Technologies 

 

satisfy the following requirements [9]: 

1) C complier can generate reentrant code; 

2) Interrupt can be disabled or enabled by C; 

3) The processor must support interrupt and be able 

to generate timing interrupt; 

4) The processor must support hardware stacks; 

The processor must have instruction to load and store 

stack pointer and other registers to RAM. 

 

2.2 SCHEDULE STRATEGY OF μCOS-II 

 

μCOS-II uses the priority-based pre-emptive scheduling 

strategy. The base unit for scheduling in it is task. One 

task includes three main components: Program code in 

memory, TCB (Task Control Block) and stack space. 

Each task has its own priority and no task has the same 

priority while there are 64 priorities managed in μCOS-II. 

In order to ensure the schedule strategy, the kernel 

μCOS-II provides system services for tasks. FIGURE 2 

shows the relationships between tasks and system 

services [9]. 

A task can request certain kinds of services of the 

kernel, then the kernel responses to corresponding 

requests. At the same time, the kernel executes the ready 

task with highest priority according to the state of the 

current task. The real-time is ensured by strategy of pre-

emptive task scheduling. 

 

2.3 THE MECHANISM OF TASK MANAGEMENT 

 

After all codes downloading in the device, we can think 

that the whole system is ready to work. The first thing is 

starting the operating system and change the program to 

tasks. 

 

 
FIGURE 1 μCOS-II Hardware/Software theoretical Architecture 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 143-150 Duan Kanghong, Zhang Hongxin, Song Shilin, Wang Peigang 

145 
Information and Computer Technologies 

 

Tasks of µCOS-II

Task 1 Task 2 Task N Idle Task……

System 

Initialization

Task

Management

Task

Scheduling

Memory

Management

Time

Management

Semaphores, Message Mailbox

Message Queue Service

Scheduling Request/Response

 
 

FIGURE 2 The relationship between tasks and system services 

 

There are four states designed for every task: 

Dormant, Ready, Waiting and Running: 

1) The dormant state is for tasks, which are deleted or 

not created. On this state, task does not have stack 

space and TCB while it cannot be scheduled. In other 

words, any dormant task is invisibility to the 

operating system. 

2) The ready state is for tasks, which are ready for being 

scheduled. On this state, all the resources that task 

will use for running have been prepared well. And the 

task only need to wait until all the tasks who have the 

higher priority finish their work. 

3) The waiting state is for tasks, which are waiting some 

resources necessary for running. On this state, task 

has stack space and TCB so that it can wait the 

necessary resources. After the resources are prepared, 

the waiting task will change its state to Ready. 

4) The running state is for the task which is running at 

the moment. The running task has all the necessary 

resources and its priority is the highest. 

 

In addition, there is ISR state for the interrupt. When 

a real-time call happens, the ISR will be triggered and OS 

will operate the new call first in order to ensure a strong 

real-time response. 

The task management for μCOS-II is to ensure the 

following things: 

1) Ensure the tasks in Dormant state occupying no RAM 

space. 

2) Ensure the tasks in Ready state arranging in order. 

3) Ensure the tasks in Waiting state preparing their 

resources in order. 

4) Ensure the task in Running state running without 

disruption. 

2.4 THE FEASIBILITY FOR TRANSPLANTING 

μCOS-II TO WSN 

 

In the introduction we have given the three features 

which are important for WSN OS. Then we can research 

the feasibility based on the three features: 

1) μCOS-II has a kernel perfect in function. But for 

WSN node, the memory capacity is a bottleneck for 

μCOS-II. Thanks to its scalable feature, we can 

improve some data structure and delete some useless 

functions for WSN in order to transplant μCOS-II. 

2) μCOS-II has been used by hundreds of applications 

and its robust and reliable features are suitable for 

WSN. 

3) Most of μCOS-II is written in highly portable ANSI 

C, with target microprocessor specific code written in 

assembly language. It determines the portable feature 

for μCOS-II. And the feature means we can transplant 

μCOS-II for WSN easily if we design a good platform 

for it. 

The research tells us that μCOS-II is suit for WSN if 

the following things are done well: 

1) Improve some data structure needing too much 

memory 

2) Simplify some functions useless for WSN 

3) Design a peripheral support platform for the μCOS-II  

 

3 Target hardware platform for transplanting 

 

Before improving μCOS-II for WSN, it is important to 

find a proper hardware platform for the research. In this 

paper, we use a normal WSN node hardware platform: 

ATmega128L micro-controller and CC2420 RF 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 143-150 Duan Kanghong, Zhang Hongxin, Song Shilin, Wang Peigang 

146 
Information and Computer Technologies 

 

transceiver chip. The main hardware resources are as 

follows: 

CPU: 8bit micro-controller with 133 powerful 

instructions and on chips 2-cycle multiplier. 

Memory: 4KB RAM and 128KB Flash ROM on chips. 

RF chips: True single-chip 2.4GHz IEEE 802.15.4 

compliant RF transceiver with baseband modem and 

MAC support. 

4 Improving μCOS-II for WSN 

 

The trend of WSN's design is for specifically applications 

rather than the general applications. And different 

applications use different hardware platforms. Therefore, 

it is essential to change the details when you transplant 

μC/OS-II to different platforms. Nevertheless, the 

principle for transplanting is universal. 

 

4.1 IMPROVE THE ARCHITECTURE 

 

For μCOS-II only provides a portable kernel, so the first 

thing for the improvement is to combine μCOS-II with 

the actual hardware. Then we can improve the original 

architecture of μCOS-II for the actual use. FIGURE 3 

shows the improved architecture. 

MCU Hardware

WeOS

Applications

RF Sensors Others

Hardware Abstraction Layer

Timer Power USART ADC OthersLed

Kernel Task

Kernel Services

Task

Management

Time

Management

Interrupt

Management

RF Message

Management
Others

System Applications Interface

… …
User 

Task 1
Interrupts

User 

Task 2

User 

Task N

 
FIGURE 3 The improved architecture 

There are two main improvements in the architecture: 

1) Give a clear HAL (Hardware Abstraction Layer) to 

combine the kernel and hardware. And if any 

hardware should be added, moved or replaced, we 

only need to modify the corresponding code in the 

HAL without doing anything in the kernel and 

applications. By means of the improvement, we can 

transplant μC/OS-II to the other platform more easier 

especially when we use a new kind of WSN node. 

2) Add a new kernel task. As mention above, the 

capability of the hardware especially the power 

supply is limited. In order to reduce energy use, we 

need to make the node sleep when there is no task 

need to be run. Therefore, we add an individual kernel 

task to finish the work. The kernel task has the lowest 

priority (always in Ready State) so that it is scheduled 

only when there is no user task ready. At the same 

time, there is no need to give any stack spaces to the 

task and the task can use the kernel service directly. 

By means of the improvement, the node can transform 

into sleep state by itself so that energy use will be 

reduced. 

 

 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 143-150 Duan Kanghong, Zhang Hongxin, Song Shilin, Wang Peigang 

147 
Information and Computer Technologies 

 

4.2 IMPROVE THE SCHEDULING STRATEGY 

 

The scheduling strategy plays an important role in the 

performances of the real-time, power and reliability. 

μC/OS-II has a balanced scheduling strategy, but we can 

get a more suitable Scheduling Strategy for WSN by 

some improvements. FIGURE 4 shows the scheduling 

strategy. 

Run the kernel 

task

MCU sleeping 

mode

Highest 

priority task
.

.

.

Lowest 

priority task

Kernel task 

in sleeping

Ready queue

Is there any user 

Task ready?

N

Interrupt occur

Task scheduling

Run the task with 

highest priority

Y

Task complete

Task is preempted or it 

has taken too long time

 

FIGURE 4 The improved scheduling strategy 

 

There are two main important points in the improved 

strategy: 

1) Modify the ready table. As mentioned above, we add 

a new kernel task with lowest priority and Ready 

State in order to make the node sleep when there is no 

user task ready. So we add a new judgement. When a 

procedure of task scheduling occurs, we first exam if 

there is any user task being in Ready State. If not, the 

kernel task will be scheduled and the MCU will get 

into Sleep Mode until an interrupt occurs. 

2) Add a rotary-time scheduling method into the 

strategy. The original strategy takes the priority-based 

scheduling method and it has been proved excellent in 

performance. But for actual applications especially in 

WSN, it is easy for users to create a high priority task 

with endless loop. It is clear that the problem will 

cause huge harm to the whole system even influence 

the other nodes. Therefore, we add a rotary-time 

scheduling method with hardware timers. And in the 

actual use, we first use the priority-based scheduling 

method to ensure the high priority task run smoothly, 

and the rotary-time scheduling method only ensure 

the task with endless loop can be stopped by the 

scheduler to make the whole system run well. 

 

 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 143-150 Duan Kanghong, Zhang Hongxin, Song Shilin, Wang Peigang 

148 
Information and Computer Technologies 

 

We use the following symbols to model the task of 

our operating system: 

S={s1,s2...sn} is the set of task; 

B={b1,b2...bn} is starting time for each task; 

L={l1,l2...ln} is time slice for each task; 

P={p1,p2...pn}is priority for each task; 

T={t1,t2...tn} is the ending time for each task; 

Then we model the task of our operating system as 

(S, B, L, P, T). 

 

For task si, its priority is pi. And when si is called, the 

bi will be recorded, and when the task is over (not include 

pre-empted by event), the ti will be recorded. If the task 

si, gets stuck in an infinite loop, when time slice li is over, 

si, will lose the control and change pi to the lowest 

priority. 

So we can get the worst waiting time for si: 





1i

k

kInitialWaiting lTT . (1) 

The improved OS simplies many practical functions 

for applications in μC/OS-II and a new scheduling state 

method shown in FIGURE 5. 

Ready Running

Waiting

Sleeping

Event Trigger

Task Awaken

Task Delete

Task 
Delete

Task Scheduled

Task preempted

Time OutTask 
Delete

 

FIGURE 5 The improved task state 

 

4.3 IMPROVE THE DATA STRUCTURE NEEDING 

TOO MUCH MEMORY 

 

The limitation of memory capacity is the main problem 

for transplanting μCOS-II to WSN, especially the RAM 

space. So the main point that can be improved is to 

reduce the consume of RAM space for μC/OS-II. 

The first thing we can do is to optimize the size and 

type of the global variable. In μC/OS-II, many global 

variables are defined as 32bits-integer data type which is 

usually useful for our WSN node. So we can change the 

32bits-integer into 8bits-integer or 16bits-integer. At the 

same time, we can change the global variables which are 

not used frequently into extern global variables. So that 

these variables are not stored in RAM. And the RAM 

space can be saved a lot by the means above. 

Another thing we can do is to enhance the table 

management. In WSN, the implementation of 

networking protocol usually uses many tables like 

routing table, neighbour table and so on. These tables 

usually are treated as temporary variables stored in RAM. 

Therefore, we can enhance the management of these 

tables by limiting table size and setting public table 

RAM spaces to reduce the RAM consume. 

The main members of RAM are global variables and 

temporary variables. So improving the size and type of 

these two variables is principle for saving more RAM 

space. 

 

4.4 IMPROVE THE DATA STRUCTURE NEEDING 

TOO MUCH MEMORY 

 

μCOS-II has many practical functions for applications, 

but in WSN, we don't need so many functions, so it's 

useful to delete some functions in order to get a more 

efficient kernel: 

1) Simplify the procedure of creating a new create. We 

delete some operations, which are useful for system 

programming but useless for applications such as 

creating a pointer to the bottom of task stack. Then 

we can save some memory spaces and creating time 

by means above. 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 143-150 Duan Kanghong, Zhang Hongxin, Song Shilin, Wang Peigang 

149 
Information and Computer Technologies 

 

2) Simplify the mechanism of task communication. 

μC/OS-II provides three kinds of methods for 

intertask communication: semaphores, message 

mailbox and message queue service. The functions of 

these three methods are similar. Therefore, we can 

choose one of them as our method. By this mean, we 

can get more space for applications instead of the 

operating system. 

3) Change the method for handling interrupt. It is 

crucial for WSN node to response the external 

interrupt especially the interrupt from RF or sensors. 

Therefore, we get the interrupt handling out of the 

task state. Instead of that, we design the interrupt 

handling as a independent component in the whole 

system. By this way, we can get a well simplified 

kernel with a better capability for handling interrupt. 

 

5 Performance analysis 

 

In order to evaluate the improved μC/OS-II especially its 

improvement for memory saving. We compiled TinyOS, 

original μC/OS-II and our improved μC/OS-II and 

downloaded them into our hardware platform. Then, we 

measured some key data to analysis the performance. 

FIGURE 6 shows the task switch latency when a 

higher priority task is ready. From the result, we can see 

that TinyOS has the worst performance to ensure the 

higher priority task to be scheduled when it is ready. At 

the same, our improved μCOS-II has the similar 

performance with the original μCOS-II. And they are 

about 5 times faster than TinyOS. 

 
FIGURE 6 Task Switch Time 

 

FIGURE 7 shows the Flash usage for each OS with 

different number and different size tasks. From the result, 

we can see that the original μCOS-II need about 40KB 

Flash space to hold the system itself. At the same time, 

our improved μCOS-II has similar performance with 

TinyOS, both of them only need less Flash space than 

half of the original μCOS-II. 

 
FIGURE 7 Flash Usage 

 

FIGURE 8 shows the RAM usage for the original 

μC/OS-II and our improved μC/OS-II with different 

number tasks. From the result, we can see that the RAM 

space with different number tasks exhibit characteristic 

of linearity. The reason of the performance is that the 

RAM space is only relate to the initial system size and 

the size of task stack in μC/OS-II. The initial size for our 

improved μC/OS-II is about half of the original μC/OS-II. 

At the same time, it is easier to manage the RAM space 

for each task in μC/OS-II than in TinyOS. 

 
FIGURE 8 RAM Usage 

 

Finally, we measure the performance for each OS 

with endless loop task. The result proves that our 

improved μC/OS-II can stop the task when it takes too 

long time to occupy the MCU. 

From the measure, we can conclude that our 

improved μC/OS-II can provide a hard real-time 

scheduling for WSN with Relatively good space 

speeding. 

 

6 Conclusion 

 

This article analyses the limitations of WSN and studies 

the classic embedded operating system μC/OS-II detailed. 

The paper brings forward a micro real-time pre-emption 

Operating System for industry Wireless Sensor Networks 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 143-150 Duan Kanghong, Zhang Hongxin, Song Shilin, Wang Peigang 

150 
Information and Computer Technologies 

 

and demonstrates the availability and performance of the 

improved operating system. It provides choices of more 

efficient system for the further study and application of 

Industry WSN.  

 

References  

 
[1] Akyildiz F, Su W, Sankarasubramaniam Y, Cayirci E 2002 IEEE 

Communications Magazine 40(8) 102-14 
[2] Minghai Y, Xiaoxiao Z 2007 Wireless Communications, 

Networking and Mobile Computing 1 2803- 07 
[3] Wei D, Chun C, Xue L, Jiajun B 2010 IEEE Communications 

Surveys & Tutorials 12(4) 519-30 

[4] Abrach H, Bhatti S, Carlson J, Dai H, Rose J, Sheth A, Shucker B, 
Deng J, Han R 2003 MANTIS: System Support For Multimodal 

Networks of in-situ Sensors The 2nd ACM International Workshop 
on Wireless Sensor Networks and Applications (WSNA) 1 50-9 

[5] Dunkels A, Gronvall B, Voigt T 2004 Contiki:A Lightweight and 
Flexible Operating System for Tiny Networked sensors Proceeings 

of the 29th Annual IEEE International Conference on Local 

Computer Networks 1 455-62 
[6] Levis A 2006 TinyOS: An Open Operating System for Wireless 

Sensor Networks The 7th International Conference Mobile Data 
Management 1 115-148 

[7] Ying L, Hongyi Z 2007 Transducer and Microsystem 

Technologies 26(03) 98-101 
[8] Jean J L 2002 μCOS-II, The Real-Time Kernel Press: Higher 

Education Press, Chapter 6 173–214 (in Chinese) 
[9] Kai L, Hongzhe X, Weiran X, Hongbo H 2005 Journal of 

Communication and Computer 38(6) 30-4 

 

Authors 

 

Kanghong Duan, 04 1987, Zhucheng City, Shanddong Province, P.R. China 
 
Current position, grades: engineer, North China Sea Marine Technical Support Centre of  State Oceanic Administration 
University studies: Graduated from University of Science and Technology, master's degree in Computer Science 
Scientific interest: Internet of Things, Marine Information, Embedded operating system. 
Publications : More than 10 papers, 3 patents  
Experience: an engineer in North China Sea Marine Technical Support Centre of State Oceanic Administration 

 

Shilin Song, 11 1961, Qingdao City, Shandong Province, P.R. China 
 
Current position, grades: professor Senior Engineer, chief engineer, North China Sea Marine Technical Support Centre of State Oceanic 
Administration 
University studies: Graduated from Ocean University of China in 1983, Bachelor of Science in Marine Geology 
Scientific interest: Marine Geology, Marine Information, Wireless Sensor Network. 
Publications: more than 30 scientific research projects, more than 20 papers, 2 patents  
Experience: as an engineer, Senior Engineer and professor Senior Engineer in North China Sea Marine Technical Support Centre of State Oceanic 
Administration  

 

Hongxin Zhang, 01 1978, Qingdao City, Shandong Province, P.R.China 
 
Current position, grades: Senior Engineer, vice Chief of Centre, North China Sea Marine Technical Support Centre of State Oceanic Administration 
University studies: Graduated from Ocean University of China in 2000, Bachelor of Science in Physical Oceanography 
Scientific interest: Physical Oceanography, Marine Information, ship information service system. 
Publications: more than 10 scientific research projects, more than 20 papers, published, 6 patents  
Experience: an engineer and Senior engineer in North China Sea Marine Technical Support Centre of  State Oceanic Administration  

 

Peigang Wang, 02 1962, Qingdao City, Shandong Province, P.R. China 
 
Current position, grades: professor Senior Engineer, Chief of Centre, North China Sea Marine Technical Support Centre of  State Oceanic 
Administration 
University studies: Graduated from Ocean University of China in 1983, Bachelor of Science in Marine Biology 
Scientific interest: Marine Biology, Marine Information, Marine Geology 
Publications: more than 20 scientific research projects, more than 20 papers, 5 patents  
Experience: an engineer, Senior Engineer and professor Senior Engineer in North China Sea Marine Technical Support Centre of State Oceanic 
Administration 

 

app:ds:engineer
app:ds:chief
app:ds:engineer

