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Abstract 

Knowledge acquisition and autonomy has been a bottleneck in machine intelligence research. This paper proposes a logical 
framework for describing machine knowledge. The so-called "machine knowledge" refers to the knowledge acquired by robot 
systems in the following way. A robot uses its sensors to sense the external environment, and the sensors transfer the external states 
(environment) to the robot's memory in the form of sensing data, then the robot converts the data into knowledge through the system 
mechanisms, and the knowledge is stored in the robot‟s knowledge base, forming its own internal state(for environment awareness). 
Robots can autonomously use their knowledge when planning and making decision without any external intervention. The aim of our 
work is modelling the above process including formal representations for sensors, sensing data and knowledge, a mechanism 

converting sensing data to knowledge and automatically updating the internal state of the robot. The main contribution of this paper 
is to present a new approach for researching machine intelligence, which develops along the direction of “machine code–machine 
data–machine knowledge–machine intelligence”. The proposed logical approach does not involve the modal logic, and its semantics 
is based on the sensing data rather than possible world models. 
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1 Introduction 

To make machine have intelligence researchers try to put 
human intelligence on machine (make machine have the 
function like human intelligence). However, it is not easy 
to do so. Some machine readable formal languages and se-
mantics are needed for describing knowledge and mental 
states. Hintikka[1] developed the first modal logic of know-
ledge and applied Kripke‟s ideas to his new logic. He con-
sidered an accessible relation on possible worlds, and defi-
ned knowledge by accessibility relations. McCarthy and 
Hayes[2] suggested using Hintikka‟s logic for representing 
an agent‟s knowledge. During the past decades, modal 
logics and possible world semantics have become one of 
the most important logical tools for representing agents‟ 
knowledge and mental attitudes such as belief, desire, 
intention, emotion, consciousness etc. And a variety of  
improved methods continue to appear. For example, some 
recent research publications are as follows. 

Lakemeyer and Levesque[3] proposed a new logic 
called ES to discuss some properties of knowledge. The 
proposed language includes a modal operator Know for 
knowledge. In this way the situations will be modeled 
where a robot has false beliefs about its world or how its 
world changes. They isolated a fragment of the situation 
calculus with knowledge (presented using a modal syntax) 
and showed it to have a relatively simple model theoretic 
semantics based on possible worlds. The interpretation of 
knowledge in ES is a special case of possible world seman-
tics. French etc[4] discussed the issue on comparing know-
ledge representation formalisms. They presented a number 

of succinctness results related to three well-known exten-
sions of multimodal logic (ML) which have a popular epis-
temic and knowledge representation interpretation. They 
tried to answer the question of whether a particular forma-
lism can express some property on some class of models or 
not. Yan Zhang and Yi Zhou[5] studied a formal notion of 
knowledge forgetting in S5 modal logic. They proposed 
four postulates that precisely characterize both semantic 
and logical properties of knowledge forgetting. And they 
also investigated possible applications of knowledge forge-
tting in various epistemic reasoning scenarios. Lijun Wua 
etc[6] extended the logic of knowledge, belief and certainty 
from one agent to multi-agent systems, and combined the 
extension of the logic and actions that have concurrent and 
dynamic properties. Based on it, they presented a concur-
rent dynamic logic of knowledge, belief and certainty for 
MAS. The modality in the proposed logic has concurrent 
properties. Saint-Cyr and Lang[7] studied the issue on rea-
soning about change in knowledge representations. They 
proposed a logical framework for reasoning with observa-
tions at different time points. A very general and structured 
class of extrapolation operators and belief extrapolation are 
defined. This work shows that belief extrapolation can be 
seen as a particular belief revision process, where the 
beliefs about the persistence of fluents are revised by 
timestamped observations. Britz etc[8] discussed preferen-
tial reasoning for modal logics and their semantics. Before 
that there was no generally accepted semantics, with cor-
responding syntactic characterization, for preferential con-
sequence in modal logics. This work fill this gap by 
providing a natural and intuitive semantics for preferential 
and rational modal consequence. The proposed modal se-
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mantics forms the foundation of preferential consequence 
for a whole class of modal-based formalisms. Moreno and 
Miguel[9] introduced application of machine consciousness 
models in autonomous situated agents and described the 
most relevant current approaches to the implementation of 
scientific models of consciousness. Depending on the con-
scious or unconscious nature of the processes, knowledge 
can be declarative or procedural, localized or distributed, 
serial or parallel. Knowledge representation is implicit in 
unconscious processes and explicit in conscious processes. 
the cognitive processes are structured in these two levels 
with different mechanisms. Reggia[10] introduced the rise 
of machine consciousness ---- Studying consciousness with 
computational models. He explained some of the concepts 
and terminology used by investigators working on machine 
consciousness, and summarized key neurobiological corre-
lates of human consciousness that are particularly relevant 
to past computational studies. 

Besides knowledge and metal attitudes, intelligence 
also contains other features. Luger[11] believe that intelli-
gent systems should satisfy the four criteria that are situa-
ted, autonomous, flexible, and social. Autonomy has always 
been a challenge in robotics research. A autonomous robot 
is one that able to act adaptively to the unknown or dyna-
mic environments[12]. To do this an internal model of robot 
needs to be designed not only with the ability of informa-
tion processing in response to external stimuli, but also 
with the ability of self-control. Adaptive behaviors of 
robots are driven by the internal model depend on the 
observation of both external environment and internal 
state. Kuremoto etc[13] proposed an improved internal mo-
del of autonomous robots to evoke robots actions using a 
psychological theory of Russell. The results showed that 
robots with the improved model can move dynamically 
and successfully reach at multiple goal areas avoiding local 
traps and obstacles in the complicated environment. In 
dealing with dynamical complex environment and acqui-
ring collaborative behaviors of autonomous robots, „„men-
tal‟‟ states of robots play important roles during the deci-
sion process of actions. 

Although there have been a lot of researches on deve-
loping machine intelligence, most existing AI systems and 
robots are not autonomous. The greatest challenge to 
achieve robot‟s autonomy is how to describe the internal 
states and internal knowledge of robots. It is needed to 
distinguish three objects, the robot, the designer and the 
user in designing autonomous robots. Reiter[14] indicated: 
the moment one chooses to take knowledge seriously in 
axiomatizing a domain, it becomes very important to un-
derstand the role of the designer – the person who writes 
the axioms – and her relationship to the agent whose state 
of knowledge she is axiomatizing. The knowledge built by 
the designer for robots belongs to “built-in knowledge”. 
And   the knowledge built by the user (or the operator) for 
robots belongs to “external knowledge”. Robots with 
“built-in knowledge” and“external knowledge” lack auto-
nomy. An autonomous robot should be able to axiomatize 
its knowledge and environment by itself. 

Modal logics and possible worlds semantics have great 
limitations for describing the autonomy of robot. Morgen-
stern and McIlraithb[15] argued that McCarthy had maintai-

ned an ambivalence toward any modal logic. His ultimate 
goal had been to formalize intelligent reasoning within 
first-order logic, or something as close to first-order logic 
as possible. Herzig[16] overviewed the most prominent 
logics of knowledge and action that were studied in the 
multiagent systems literature. There are weaknesses in the 
design of these logics and arguments on their suitability to 
represent knowledge and reason about it. Accessibility 
relations in possible world semantics is an important factor 
that can not well represent autonomous robots‟ knowledge. 
Robots are incapable of designing accessibility relations in 
an unknown environment. Accessibility relations must be 
designed by the system designers or external operators. 

It is well known that data, information, knowledge and 
intelligence are intrinsically linked[17,18]. Inspired by this 
thought, we propose a new approach for describing robot‟s 
knowledge, which focus on the characteristics of machine. 
In other words, we research machine intelligence along the 
evolutionary direction of “machine code–machine data–
machine knowledge–machine intelligence”.  we proposes a 
logical framework for describing machine knowledge. The 
so-called "machine knowledge" refers to the knowledge 
that a robot uses its sensors to sense the external environ-
ment, and the sensors transfer the external states (environ-
ment) to the robot's memory in the form of sensing data, 
then the robot converts the data to knowledge through the 
system mechanisms, and the knowledge is stored in the 
robot‟s knowledge base, forming its own internal state(for 
environment awareness). Our logical approach does not 
involve the modal logic, and the proposed semantics is 
based on the sensors rather than possible world models. 
The aim of our work is modeling the above process inclu-
ding a formal representation for sensors, sensing data and 
knowledge, a mechanism converting sensing data to know-
ledge and automatically updating the internal state of the 
robot. 

The rest of the paper is organized as follows. In the 
next section we introduce the syntax and semantics of LMK  
and discuss sensors, sensing actions and sensing data. In 
Section 3, we design a mechanism for converting sensing 
data into knowledge and automatically updating the inter-
nal state of the robot. Section 4 provides the an application 
example of the logical framework to show the autonomous 
performance of robots in LMK . Finally we end the paper 
with a conclusion. 

2 A logical framework for machine knowledge 

In this section we build a logical framework LMK  for des-
cribing machine knowledge. LMK  is an expansion of the 
traditional situation calculus action theory by adding two 
kinds of sensors and defining a novel semantics based on 
sensing data. Most concepts and symbols concerned action 
theories and situation calculus in this paper can see[19,20]. 

2.1 THE SYNTAX OF 𝐋𝐌𝐊 

The syntax of LMK  is constructed as follows: 

1.  The alphabet in LMK : 

 The alphabet of the standard first order logic;  

 Countable infinite many individual variable symbols 

for action: 𝑎1, 𝑎2, ⋯; 
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 Countable infinite many individual variable symbols 

for situation: 𝑠1, 𝑠2, ⋯; 

 Countable infinite many individual variable symbols 

for object: any usable symbol. 

 Finite specific functional constant symbols:  

f, g, h, ⋯, these specific symbols correspond to the 

functional sensors fixed on robots. 

 Finite specific predicate constant symbols:  

P, Q, R, ⋯, these specific symbols correspond to the 

relational sensors fixed on robots. 

2.  The formation rules of terms and well formula are the 

same as in the standard first order logic and the tradi-

tional situation calculus. 

3.  The inference rules in LMK  are the same as in the stan-

dard first order logic and the traditional situation cal-

culus. 

2.2 SENSORS, SENSING ACTIONS AND  

SENSING DATA IN LMK  

Suppose that robots are equipped with multiple sensors. 

The sensors here are mechanical settings fixed on robots. 

Each sensor has a specific function. For example, they can 

independently identify a desk, a book, or the position 

relationship between two objects, and so on. There are two 

sorts of sensors in our systems:  

 Relational sensors, denoted by 𝐵𝑂𝑂𝐾        (x), 𝐷𝐸𝑆𝐾        (x), 

⋯, their functions are to check whether certain objects 

have a particular relationship. These sensors have tow 

output values “YES” and “NO”. The value is “YES”, 

if the relation holds; the value is “NO”, otherwise. For 

example, the sensor  𝐵𝑂𝑂𝐾        (x) is used to check 

“whether x is a book”; the sensor 𝐷𝐸𝑆𝐾        (x) is used to 

check “whether x is an eraser”; the sensor 𝑂𝑁    (x, y) is 

used to check “whether x is on y”. 

 Functional sensors, denoted by 𝑑𝑖𝑠𝑡     (𝑥,𝑦), 𝑡𝑒𝑚𝑝       (𝑥), 

⋯, their functions are to determine the value of some 

attribute of objects. The output values of these sensors 

vary in some range like a mathematical function. For 

example, the sensor 𝑑𝑖𝑠𝑡     (𝑥, 𝑦) is used to determine 

“the distance between x and y ”, the value of 

𝑑𝑖𝑠𝑡     (𝑥,𝑦) varies in [0, +∞); the sensor 𝑡𝑒𝑚𝑝       (𝑥) is 

used to determine “the temperature of x”, its value 

varies in (-270, +∞). 

Sensing actions are those robots perform using their 

sensors to get external environment information. For 

example, When a robot wants to check whether the object

a is a book, the robot needs to perform a sensing action: 

starts the sensor 𝐵𝑂𝑂𝐾        (x) and use 𝐵𝑂𝑂𝐾        (x) to work on 

a. If a is a book, then the output value of  𝐵𝑂𝑂𝐾        (a) is 

“YES”; if a is not a book, then the output value of  

𝐵𝑂𝑂𝐾        (a) is “NO”. In the same way, when a robot wants 

to determine whether two objects b and c have the relation 

“ b is on c”, the robot needs to perform a sensing action: 

start the sensor 𝑂𝑁    (x, y) and use 𝑂𝑁    (x, y) to work on b 

and c. The output value of  𝑂𝑁    (b, c) will be “YES”, if b is 

on c; the output value will be “NO”, if b is not on c. 

Sensing data come from robots‟ sensors. When a robot 

performs a sensing action, the corresponding sensor will 

return a sensing result. The system acquires sensing data 

from the (name of) sensor and its return value (YES/NO). 

Generally, there are two types of sensing data, relational 

sensing data and functional sensing data.  

 the structure of relational sensing data: < name of 

sensor, object-1,object-2, ⋯, object-n, YES/NO>. For 

example, if the robot performs a sensing action: starts 

the sensor 𝐵𝑂𝑂𝐾        (𝑥) and uses 𝐵𝑂𝑂𝐾        (𝑥) to work on 

a, and the output value of  𝐵𝑂𝑂𝐾        (a) is “NO”,  then 

the system will acquire sensing data < BOOK, a, NO 

>; if the robot performs another sensing action: start 

the sensor 𝑂𝑁    (x, y) and use 𝑂𝑁    (x, y) to work on b 

and c, and the output value of  𝑂𝑁    (b, c) is “YES”,  

then the system will acquire sensing data < ON, b, c, 

YES>. See figure 1. 

 the structure of functional sensing data: < name of 

sensor, object-1,object-2, ⋯, object-n, value of 

attribute >. For example, if the robot performs a 

sensing action: start the sensor 𝑑𝑖𝑠𝑡     (x, y) and use 

𝑑𝑖𝑠𝑡     (x, y) to work on b and c, and the output value of  

𝑑𝑖𝑠𝑡     (b, c) is 6,  then the system will acquire sensing 

data < dist, b, c, 6>. 

 

                             environment                     sensors                  putout values            sensing data 

                                       b                                

                           d                                          𝐵𝑂𝑂𝐾        (𝑥)  putout       “YES”          < BOOK, b, YES > 
                                                                  

                                                                       𝐵𝑂𝑂𝐾        (𝑥)  putout       “NO”            < BOOK, d, NO > 
 

 

 

FIGURE 1 the sensing data generated by 𝐵𝑂𝑂𝐾        (𝑥)
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2.3 THE SEMANTICS OF LMK  

In this section we define a semantics based on sensing data 

for LMK . The semantic interpretations of the formulas in 

LMK  are defined as follows: 

a)  Let 𝐏(x1 , x2 ,⋯ , xn)
 
be a specific atomic predicate 

formula in LMK , 𝑃 (x1 , x2 ,⋯ , xn) be its corresponding 

sensor, and  a1, a2, ⋯ , an be individual objects in the 

robot‟s environment, then 

𝐏(a1, a2 ,⋯ , an) is true, if the robot receives sensing 

data < P, a1, a2, ⋯ , an, YES >; 

𝐏(a1, a2 ,⋯ , an) is false, if the robot receives sensing 

data < P, a1, a2, ⋯ , an, NO >; 

b) ¬𝐏(a1 , a2 ,⋯ , an)
 
is true  iff 

1 2( , , , )na a aP
 
is false; 

c) 𝐏(a1, a2 ,⋯ , an)⋀𝐐(a1, a2 ,⋯ , an)
 
is true iff 

𝑷(a1 , a2 ,⋯ , an) and 𝑸(a1 , a2 ,⋯ , an) both are true; 

d) 𝐏(a1, a2 ,⋯ , an) ∨ 𝐐(a1 , a2 ,⋯ , an) is true iff  at least 

one of the two is true; 

e) 𝐏(a1, a2 ,⋯ , an) → 𝐐(a1 , a2 ,⋯ , an) is false iff 

𝐏(a1, a2 ,⋯ , an) is true and  𝐐(a1 , a2 ,⋯ , an) is false; 

f) ∃x𝐏(x) is true iff the robot receives sensing data < P, a, 

YES > for some object a in the robot‟s environment;  

g) ∀x𝐏(x) is true iff the robot receives sensing data < P, a, 

YES > for all object a in the robot‟s environment; 

Figure 2 is an example of semantic interpretations ba-

sed on sensing data. 

 

                               Sensing data                              formula                            statements 

                            < BOOK, b, YES >                      BOOK(x)                        BOOK(b) is true 

                            < BOOK, d, NO >                        BOOK(x)                       BOOK(d) is false 

< DESK, d, YES >                       DESK(x)                        DESK(d) is true 

                           < ON, b, d, YES >                         ON(x, y)                         ON(b, d) is true 

 

FIGURE 2  Semantic interpretations based on sensing data 

The semantic interpretations of the specific functions in 

LMK  are defined as follows: 

Let 𝒇(x1 , x2 ,⋯ , xn) be a specific function in LMK , 

𝑓 (x1 , x2 ,⋯ , xn) be its corresponding sensor, and a1, a2, ⋯ 

, an are individual objects in the robot‟s environment, then 

𝒇 a1 , a2 ,⋯ , an = v, if the robot receives sensing data < f, 

a1, a2, ⋯ , an, v >. 

This kind of semantic interpretation is a situated inter-

pretation (by contrast, the classical first-order semantic 

interpretation is a model interpretation). Only the relevant 

objects in the robot‟s environment are considered. 

3 Machine knowledge 

3.1 ROBOT‟S INTERNAL KNOWLEDGE 

This section discusses the formation of internal knowledge 
for robots. To this end, a internal knowledge base IKB is 
built and a mechanism for converting data to knowledge is 
designed.  

Internal knowledge base IKB. When a robot performs a 
sensing action (starts its sensors to sense external environ-
ment), the sensors will return their sensing results to the 
system in the form of data. Then the system converts sen-
sing data to knowledge. For example, when a robot per-
forms a sensing action: starts the sensor 𝐵𝑂𝑂𝐾        (𝑥) and 
uses 𝐵𝑂𝑂𝐾        (𝑥) to work on a, and the output value of  
𝐵𝑂𝑂𝐾        (a) is “YES”,  then the system acquires sensing data 
< BOOK, a, YES >; meanwhile, the system converts the 
sensing data < BOOK, a, YES > to knowledge “ a is a 
book”, where “a is a book” can be denoted by a  predicate 

formula BOOK(a), or other forms. Knowledge acquired 
from sensing data by sensors will be stored in IKB. 
Knowledge in IKB is called internal knowledge of robot. 

IKB updating. IKB of robot will be updated while the 
robot performs sensing actions. The rules of IKB updating 
are as follows. 

1)   If the new sensing data and the original sensing data are 
the same, then the original sensing data and knowledge 
are retained. 

2) If the new sensing data and the original sensing data are 
not the same, then replace the original data with new 
data; meanwhile replace the original knowledge with 
new knowledge in IKB.   

3.2 ROBOT'S MENTAL STATES 

It is needed to representing robot‟s mental states in descri-
bing machine intelligent and  intelligent decision, planning, 
reasoning about action, and so on. We introduce an opera-
tor Knows to represent robot‟s mental states involving 
knowledge.  

 
Definition1 Let be a first order statement, IKB is the 

internal knowledge base of the robot, then Knows (Robot, 
φ) denotes “ Robot knows φ”, and Knows (Robot, φ) is 
interpreted in LMK   as  

Knows (Robot, φ) if and only if φ ∈ IKB. 

Definition1 indicates that a robot knows and only 
knows the knowledge in its internal knowledge base IKB. 
Relationship of sensing data, internal knowledge and 
mental states are showed in Figure 3. 
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        Sensing data                                  IKB                                          mental states 

   < BOOK, b, YES >                    BOOK(b) is true                       Knows (Robot, BOOK(b))    

   < BOOK, d, NO >                     BOOK(d) is false                      Knows (Robot, DESK(d))     

 < DESK, d, YES >                     DESK(d) is true                        Knows (Robot, ON(b, d))     

   < ON, b, d, YES >                     ON(b, d) is true                              

 

FIGURE 3  Relationship of sensing data, internal knowledge and mental states 

3.3 IKB AND MACHINE KNOWLEDGE 

The so-called "machine knowledge" refers to the know-
ledge acquired by robot systems in the following  way. A 
robot uses its sensors to sense the external environment, 
and the sensors transfer the external states (environment) to 
the robot's memory in the form of sensing data, then the 
robot converts the data into knowledge through the system 
mechanisms, and the knowledge is stored in the robot‟s 
knowledge base, forming its own internal state(for environ-
ment awareness). Robots can autonomously use their 
knowledge when planning and making decision without 
any external intervention. Since the process of acquiring 
knowledge in IKB is finished autonomously by robot 
system. So robot‟s internal knowledge can be considered as 
knowledge of the machine. The reasons are as follows. 

 each sensor is a independent subsystem and can work 
in an autonomous way. For example, if the robot starts 
the sensor  𝐵𝑂𝑂𝐾        (𝑥) to work on object a, then 
𝐵𝑂𝑂𝐾        (𝑎) automatically outputs “YES” / ”NO”.  

 Since sensors are part of the robot system, the system 
can control and manage these sensors. Particularly, the 
system remembers sensors‟ name. So when  𝐵𝑂𝑂𝐾        (𝑎) 
returns “YES” to the system, it can get sensing data < 
BOOK, a, YES > according to sensor‟s name 
“BOOK”, object “a” and output value “YES”. This 
process is also completed in the robot‟s system.  

 LMK  is a formal system and the semantics of formula in 
LMK  is based on sensing data. So the system can 
interpret formula without relying on the designers and 
pre-designed models. To convert sensing data < 
BOOK, a, YES > to knowledge “a is a book” (or 
predicate formula BOOK(a)) is easy in LMK .  

 According to definition1, robot's mental states come 
from IKB is clear and determined. Robots can use their 
knowledge to design planning and perform actions 
without interference from the external operators. 

4 An application example of the logical framework 

In this section, we illustrate an application of the logical 
framework. A hypothetical scenario is as follows: there are 
4 people, a book, a desk, a bookshelf, an office, a 
laboratory and a library in the environment. The book was 
on the desk in the office initially. Then several events 
happened.  

 The first time: Person 1 walked into the office and 
saw a book on the desk. He didn‟t touch the book and 
then left the office; 

 The second time: Person 2 walked into the office and 
saw the book on the desk. Next, he took the book to the 

laboratory and put the book on the bookshelf, and then 
left the laboratory; 

 The third time: Person 3 walked into the laboratory 
and saw the book on the bookshelf, then he took the 
book home. 

 The fourth time: Person 4 sent a message to Person 1, 
Person 2 and Person 3: “Please send the book to the 
library if you know where the book is.” 

Here, we suppose that any two of them did not ex-
change information each other. We want to know what 
actions they will take. In general, the following actions 
would be appropriate.  

(1)  Person 1 will go to the office, because he knows the 
book is on the desk in the office; 

(2)  Person 2 will go to the laboratory, because he knows 
the book is on the bookshelf in the laboratory; 

(3)  Person 3 will takes the book in his home and send it to 
the library. 

We will represent the above events using the formal 
language of LMK . For the sake of simplicity, we only des-
cribe formally the putout values of sensors, sensing data 
and internal knowledge, and describe actions and situation 
calculus in informal language. 

The initial situation S0: {ON(b, d), b = book, d = desk}. 

 Event 1: robot 1 walks into the office and starts the 
sensor  𝐵𝑂𝑂𝐾        (𝑥) and 𝐷𝐸𝑆𝐾        (𝑥)   to work on object b 
and d respectively, and robot 1 also starts the sensor 
𝑂𝑁    (𝑥,𝑦) to work on b and d, then 𝐵𝑂𝑂𝐾        (b) putouts 
“YES”, 𝐵𝑂𝑂𝐾        (d) putouts “NO”; 𝐷𝐸𝑆𝐾        (b) putouts 
“NO”, 𝐷𝐸𝑆𝐾        (d) putouts “YES”; 𝑂𝑁    (b, d) putouts 
“YES”. Next, robot 1 get sensing data < BOOK, b, 
YES >, < BOOK, d, NO >, < DESK, b, NO >, < 
DESK, d, YES >, < ON, b, d, YES >.  Next, robot 1 
acquires internal knowledge BOOK(b), DESK(d), 
ON(b , d). Finally, Robot 1 leaves the office. Thus, we 
have situation S1:  

 {ON(b, d), b = book, d = desk, s = bookshelf, h = 
home; Knows (Robot 1, BOOK(b)), Knows (Robot 1, 
DESK(d)), Knows (Robot 1, ON(b, d))}. 

 Event 2: robot 2 walks into the office and starts the 
sensor  𝐵𝑂𝑂𝐾        (𝑥) and 𝐷𝐸𝑆𝐾        (𝑥) to work on object b 
and d respectively, and robot 1 also starts the sensor 
𝑂𝑁    (𝑥,𝑦) to work on b and d, then 𝐵𝑂𝑂𝐾        (b) putouts 
“YES”, 𝐵𝑂𝑂𝐾        (d) putouts “NO”; 𝐷𝐸𝑆𝐾        (b) putouts 
“NO”, 𝐷𝐸𝑆𝐾        (d) putouts “YES”; 𝑂𝑁    (b, d) putouts 
“YES”. Next, robot 2 get sensing data < BOOK, b, 
YES >, < BOOK, d, NO >, < DESK, b, NO >, < 
DESK, d, YES >, < ON, b, d, YES >.  Next, robot 2 
acquires internal knowledge BOOK(b), DESK(d), 
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ON(b , d). Next, Robot 2 takes the book to the 
laboratory and put the book on the bookshelf, and then 
leaves the laboratory. At this time, Robot 2‟s sensing 
data and internal knowledge needs to be updated. 
Finally, Robot 2 acquires internal knowledge 
BOOK(b), DESK(d), BOOKSHELF(s), ON(b, s). 
Thus, we have situation S2: 

 {ON(b, s), b = book, d = desk, s = bookshelf,  
h = home; Knows (Robot 1, BOOK(b)),  
Knows (Robot1, DESK(d)), Knows (Robot 1, ON(b, 
d)), Knows (Robot 2, BOOK(b)), Knows (Robot 2, 
DESK(d)), Knows (Robot 2, BOOKSHELF(s)),   
Knows (Robot 2, ON(b, s))}. 

 Event 3: robot 3 walks into the laboratory and starts 
the sensor  𝐵𝑂𝑂𝐾        (𝑥) and   𝐵𝑂𝑂𝐾𝑆𝐻𝐸𝐿𝐹                 (𝑥) to work 
on object b and s respectively, and robot 3 also starts 
the sensor 𝑂𝑁    (𝑥, 𝑦) to work on b and s; then 
𝐵𝑂𝑂𝐾        (b) putouts “YES”, 𝐵𝑂𝑂𝐾        (s) putouts “NO”; 
𝐵𝑂𝑂𝐾𝑆𝐻𝐸𝐿𝐹                 (b) putouts “NO”, 𝐵𝑂𝑂𝐾𝑆𝐻𝐸𝐿𝐹                 (s) 
putouts “YES”; 𝑂𝑁    (b, s) putouts “YES”. Next, robot 3 
get sensing data < BOOK, b, YES >, < BOOK, s, NO 
>, < BOOKSHELH, b, NO >, < BOOKSHELH, s, 
YES >,, < ON, b, s, YES >.  Next, robot 3 acquires 
internal knowledge BOOK(b), < BOOKSHELH, s, 
YES >, ON(b , s). Next, Robot 3 takes the book to 
home. At this time, Robot 3‟s sensing data and internal 
knowledge needs to be updated. Similar to the previous 
step, Robot 3 finally acquires internal knowledge 
BOOK(b), BOOKSELF(s), IN(b, h). Thus, we have 
situation S3:  

 {ON(b, s), b = book, d = desk, s = bookshelf h = home; 
Knows (Robot 1, BOOK(b)), Knows (Robot 1, 
DESK(d)), Knows (Robot 1, ON(b, d)), Knows (Robot 
2, BOOK(b)),  Knows (Robot 2, DESK(d)), Knows 
(Robot 2, BOOKSHELF(s)),  Knows (Robot 2, ON(b, 
s)), Knows (Robot 3, BOOK(b)),  Knows (Robot 2, 
BOOKSHELF(s)),  Knows (Robot 2, IN(b, h))}. 

 Event 4: Robot 4 sends a message to Robot 1, Robot 2 
and Robot 3: “Please send the book to the library if you 
know where the book is”. Robots react according to 
their own knowledge. 

 Robot 1 goes to the office according to its 

individual knowledge  

Knows (Robot 1, ON(b, d)); 

 Robot 2 goes to the laboratory according to its 

individual knowledge  

Knows (Robot 2, ON(b, s)); 
 Robot 3 takes the book from his home to the 

library according to its individual knowledge 

Knows (Robot 2, IN(b, h)). 

It is easy to see that Robot 1, Robot 2 and Robot 3 all 

make a correct decision. And all people would do it in 

such a way. 

5 Conclusion 

In this paper, we propose a logic framework  LMK  for des-
cribing machine knowledge. The syntax of LMK  is an 
extension of situation calculus action theory and the 
semantics of LMK  is based on sensing data. Compared with 
the possible world accessibility relations or situation aces-
sibility relations, the proposed semantics has a much 
stronger ability to describe the autonomy of robots. We 
introduce a formal method to represent sensors, sensing 
data and knowledge in LMK  and design a mechanism con-
verting sensing data into knowledge and automatically 
updating the internal state of robots. We also provide the 
an application example of the logic framework to show the 
autonomous performance of robots describing in LMK . Our 
logical approach does not involve possible world models in 
modal logic. The main contribution of our work is to pre-
sent a new approach for researching machine intelligence, 
developing along the direction of “machine code–machine 
data–machine knowledge�machine intelligence”. On this 
basis, We will further study machine intelligence including 
“machine belief”, “machines emotion”, machine consciou-
sness etc. 
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