
COMPUTER MODELLING & NEW TECHNOLOGIES 2016 20(1) 16-20 Zdravkova E, Nenkov N

16
Information and Computer Technologies

Comparative analysis of simulators for neural networks
Joone and NeuroPh

E Zdravkova, N Nenkov*

Faculty of Mathematics and Informatics, University of Shumen “Episkop Konstantin Preslavsky”

115, Universitetska St., Shumen 9712, Bulgaria

*Corresponding author’s e-mail: elitca_spasova@abv.bg, naydenv@shu-bg.net

Received 1 March 2016, www.cmnt.lv

Abstract

This paper describes a comparative analysis of two simulator neural networks - Joone and NeuroPh. Both
simulators are object-oriented and java - based. The analysis seeks to show how much these two simulators
are similar and how different in their characteristics, what neural networks is suitable to be made through
them, what are their advantages and disadvantages, how they can be used interchangeably to give certain
desired result. For the purpose of comparative analysis of both the simulator will be realized logic function,
which is not among the standard, and relatively complex and is selected as a combination of several
standard logical operations.

Keywords:

neural network

neural network simulator

logical function
exclusive OR

neural network architecture

1 Introduction

Both the simulator selected for the study are Java - based
and object - oriented simulators. The used simulators are
Joone 4.5.2 and NeuroPh 2.92. Joone is object - oriented
frameworks allows to build different types of neural
networks. It is built on combining elements which can also
be expanded to build new training algorithms and archi-
tecttures for neural networks. The components are inter-
changeable with programming code modules that connect to
be performed on the data stream and be deriving obtained
information and relevant results. New components that the
user adds, can be planned and again. Beyond simulation,
Joone has opportunities for multiplatform deployment.
Joone has a graphical editor for graphically deployment and
testing of each neural network, and the teaching and testing
of many examples, the network is configured and can be
trained even from multiple remote machines. As of 2010
Joone, NeuroPh and Encog are main component - based
environments for neural networks of java - platforms. [1, 2]

Joone can be considered not only as a simulator of neural

networks such frameworks were, but as a fully integrated

development environment. Unlike its trading partners, it has

a strong focus on the code, building a neural network, but

not on the visual design. In theory Joone can be used to build

a wide range of adaptive systems (including those with mal-

adaptive elements) but generally his focus is on building

backpropagation - neural networks.

NeuroPh is lightweight frameworks allowed to simulate

neural networks. It is java - based and can be use basic for the

development of standard types of neural network architectures.

It contains well designed open source library and a small

number of core classes that correspond to basic concepts in

neural networks. There is a good graphics editor toquickly build

java - based components of neural networks [3].

2 Methodology

To be tested and analyzed both the simulator will realize
logical function, and which is relatively complex and is not
among the standard. The generated neural network calculate
the result of the following logical function:

((((A XOR B) AND C) OR D)  ((((E XOR F) AND G) OR

H))  I)) AND (((J XOR K)(L XOR M)) OR (N O))

The logical function implemented in the neural network
includes several logical operators:

• AND - Provides value 1 (TRUE) if both inputs are 1
argument.

• OR - Provides value 1 (TRUE) if at least one input
argument is 1.

• XOR - EXCLUSION OR - Provides value 1 (TRUE)
if the two input arguments are different.

•  (implication) - Provides a value of 0 (FALSE) if the
first argument is 1, the second 0. In other cases, 1.

•  (Peirce's arrow NOR) - negation of the disjunction
(in logical circuits can be represented as a combination
OR - NOT). Gives a value of 1 (TRUE) if both input
argument is

First we will make the realization of simulator neural
networks Joone.

The neural network is built by JOONE 4.5.2.0.
Contains: an input layer - Input - 15 neurons,
4 hidden layers respectively:
I 15 neurons
II with 10 neurons
III 8 neurons
IV with 15 neurons
And one output layer 10 neurons.
Learners data are taken from the file: xor1. Txt
Test examples are taken from the file: test_pattern.txt
The results are recorded in the file: results.txt

COMPUTER MODELLING & NEW TECHNOLOGIES 2016 20(1) 16-20 Zdravkova E, Nenkov N

17
Information and Computer Technologies

FIGURE 1 Layers of the neural network in Joone

Development of the model to reach the optimal
architecture is as follows:

First, we test neural network with I hidden layer with 15
neurons and output layer with one neuron:

After 10,000 epochs: RMSE - 7.75
After 20,000 epochs: RMSE - 6.83
Then, we test neural network with II hidden layer (15

neurons - 10 neurons), and an output layer with 1 neuron:
After 10,000 epochs: RMSE - 4.64
After 20,000 epochs: RMSE - 3.97
It is seen that the search it textures do not give a good

enough value of error. Therefore, the development of the
model should be continued. This is done by testing
successively on following architectures:

II hidden layers (15 neurons - neurons 15) and output
layer with one neuron:

After 10,000 epochs: RMSE - 5.57
After 20,000 epochs: RMSE - 4.77
III hidden layer (15 neurons - 10 neurons - neurons 10)

and an output layer with 1 neuron:
After 10,000 epochs: RMSE - 4.57

After 20,000 epochs: RMSE - 3.93
III hidden layers (15 neurons - neurons 10 - 8 neurons)

and output layer with one neuron:
After 10,000 epochs: RMSE - 4.27
After 20,000 epochs: RMSE - 3.03
IV hidden layers (15 neurons - neurons 10 - 8 neurons -

neurons 8) and output layer with one neuron:
After 10,000 epochs: RMSE - 4.51
After 20,000 epochs: RMSE - 3.88
IV hidden layers (15 neurons - 10 neurons - neurons 8 -

10 neurons) and output layer with one neuron:
After 10,000 epochs: RMSE - 4.38
After 20,000 epochs: RMSE - 3.76
IV hidden layers (15 neurons - neurons 10 - 8 neurons -

neurons 15) and output layer with one neuron:
After 10,000 epochs: RMSE - 4.18
After 20,000 epochs: RMSE - 3.57
IV hidden layers (15 neurons - neurons 10 - 8 neurons -

neurons 15) and output layer 10 neurons:
After 10,000 epochs: RMSE - 0.001
It is seen that the last result is satisfying and we can stop

the development of the model.
The learning set consists of 100 training examples that

we taken from the file xor1.txt. Test cases are 20 and are
located in the file test_pattern.txt.

The following table shows the results of testing with
learning set. Below are the input values - from 1 to 15, the
expected result of these inputs and the actual result. The
expected result is determined by a complex logical function,
which we described above. The actual result is the output of
the system - Joone.

TABLE 1 Result on learning set in Joone

Inputs Outputs

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Desired Actual

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00185941651318

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.00171267854721

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.00174068713052

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.00171297868822

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.00171263203490

1.0 0.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.99819065530154

0.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.99874748651663

1.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.99840020882580

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.00171176387902

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.00171063441000

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.001711942825887

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.00170547142383

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.001704159243449

1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.998690422813351

0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.99825801114161

0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.99859104574956

1.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.99866411324620

0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.00170372477138

0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.00170383697555

0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.00170418058508

0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.00170950487012

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.00171284151805

0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.00171307490515

0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.99868704088361

0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.99886986914373

0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.99879712659079

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00181573650909

1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00181573650909

1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00181828998258

1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.00196073740338

1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.99831946230466

1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.998699389310955

1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.998776103873972

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.996709046387602

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.004418785357284

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00182640654367

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.00179886966065

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.00178497066089

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.00178017710286

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.001723142165490

1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.00170867604999

COMPUTER MODELLING & NEW TECHNOLOGIES 2016 20(1) 16-20 Zdravkova E, Nenkov N

18
Information and Computer Technologies

1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.00171115476091

0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.00194277916844

0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.00180661004916

1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.00170405227369

0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.99872473082876

1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.00345636992553

0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.001706998074978

1.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.99820203498989

0.0 0.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.99876787843303

1.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.00201477197411

0.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00170808545531

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.001862992242455

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00208965556292

0,0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.99796070484324

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00208866209964

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.001925035898582

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00175139675889

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00172983744967

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00171707163438

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00194790523692

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.00181551577185

1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00181828998258

0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.998664650256829

0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00231109937107

0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00171578793161

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00172035245579

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.001794173831323

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.00172606629957

1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00196073740338

0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.99875045408016

0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00170605685128

0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.00172491821548

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.00172441171231

1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.99876893064456

0.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.998708135281306

0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.99862109900078

0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.00171646520616

0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.00170500832053

0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.00170441208624

0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.00170422833047

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.00170494386384

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.001707391479248

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.00172391240963

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.00179535552546

0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.00175517036174

0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.001707701495688

0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.001706150804015

0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.001705704003614

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.00170749323605

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.00171540639749

0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.00175856759291

0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.00170792028372

0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.00170627806636

0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.001705806627616

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.00170767275065

0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.99864765385988

1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.998167383168365

0.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.99875043991273

1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.998158499362219

Testing the examples of training set gives result described in the table below.

TABLE 2 Results on training set in Joone

Inputs Output

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Desired Actual

0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 0.001705444100867728

0.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 0.0 0.0017365073818188474

0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0017126790834616611

0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 0.0 0.0017221518565343809

0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0017881340101438775

1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.8408661190565192

1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0017213972306672999

1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0018150456091549265

1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0017396394623614357

1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0017129149981214703

0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.022991489166898076

0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0018174232780409597

0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.9987247308287605

0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.9935189616059639

0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1,0 0.0 0.0 1.0 0.0 0.0 1.0 0.8113680710622061

1.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0017054508579993635

1.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0017108325172039915

1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.001704052273698014

1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0017046034834530507

1.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 0.0017054124015384057

COMPUTER MODELLING & NEW TECHNOLOGIES 2016 20(1) 16-20 Zdravkova E, Nenkov N

19
Information and Computer Technologies

In the above table are again described input values which
have already from training set. Here we have 20 examples.
In the last two columns are the result which must be pre-
pared according to the logical function, and actual result
from the system - Joone.

The designed neural network can be used to predict the
output of the implemented logic function. It gives good
results on learning set and on examples of the test set.

It is follows to implement the same architecture of the
neural network simulator NeuroPh.

FIGURE 2 Neural network in NeuroPh

The neural network has again four hidden layer neurons.
Its structure is as follows - input layer (15 neurons), output
layer (10 neurons), I hidden layer (15neurons), II hidden
layer (10 neurons), III hidden layer (8 neurons), IV hidden
layer (15 neurons).

In testing and training with the same learning set it
proved that the neural network is not trained and cannot
properly classify examples of the test set. Training and
learning set are the same as those used in the previous
simulator Joone.

To be completed research we including an example of
realization of the standard logical function - exclusive or
(XOR). This is a logical function which gives true when one
of the input statements is true and the other is false.

Neural network, realize this logical function is shown in
the following figure. It has one neuron in the input layer, two
neurons in the hidden layer and one neuron in the output layer.

FIGURE 3 Neural network realizes a logical function "exclusive or" in

NeuroPh

On the structure of the neural networkis used the results
from "Research of simulators for neural networks through the
implementation of multilayer perceptron". (Zdravkova, 2015).

The network is fully trained after 1900 iterations. After
learning of the network supplying as input values 1 1. The

results are as follows - the value of neurons in the hidden
layer are 0.101 and 0.902; value of the neuron in the output
layer is 0.125. Conduct a second test with values 1, 0. The
results are as follows - the value of neurons in the hidden
layer are respectively 0.839 and 0.998; value of the neuron
in the output layer is 0.871.

We see here that the results are good. Unlike the previous
function that failed to give good result after training.

Now test the neural network with the same architecture
in simulator Joone [4].

Result after 20,000 epochs: RMSE - 0,29.
The following table shows the input values of the

standard logical function and the corresponding result for
these input values. The last column shows actual output
from the system - Joone.

TABLE 3 results on Exclusive OR in Joone

Inputs Output

1 2 Desired Actual

0 0 0 0.010592225910198724
0 1 1 0.6618289936765938

1 0 1 0.6718835779208182

1 1 0 0.6819571896978877

FIGURE 4 Neural network realized "exclusive or" in simulator Joone

It is noted that the results for this logical function here
are not as good as in the simulator NeuroPh.

The first logical function here also gave a good result.

3 Conclusions

After the conducted tests it shows that both the simulator

for neural networks have some peculiarities. Both

simulators are java - based and object - oriented. But they

have different results in tests with certain types of neural

networks. At the same architecture of the neural network

(the same number of layers and neurons) and identical sets

of test data, the both simulator give different results.

As the results shows, the simulator Joone gives much

better results in the testing of arbitrary complex logical

function, which is not among the standard. In this simu-

lator there is a very good opportunities to create new types

of algorithms and architectures of neural networks.

The simulator NeuroPh does not give good results in

tests with random set, complex logic functions. Basic on a

tests we can observe, that NeuroPh can be used in standard

logic operations and it is suitable for beginners in the crea-

tion of neural networks programmers. The simulator Joone

can be used by advanced programmers of neural networks.

COMPUTER MODELLING & NEW TECHNOLOGIES 2016 20(1) 16-20 Zdravkova E, Nenkov N

20
Information and Computer Technologies

References

[1] Heaton J T 2005 Introduction to Neural Network with Java Paperback

[2] David J Artificial Neural Network. Methods and Applications,

Livingstone

[3] Suzuki K Artificial Neural Networks Industrial and control engineering

applications

[4] Zdravkova E 2015 Research of simulators for neural networks through

the implementation of multilayer perceptron, Information

Technologies, Management and Society, The 13th International

Conference inInformation Technologies and Management 2015 55-6

AUTHORS

Еlitsa Spasova, 15.02.1988, Bulgaria

Current position, grades: assistant in Shumen University

University studies: Master in Artificial Intelligence

Scientific interest: Artificial Intelligence, Neural Networks, Genetic Algorithms

Publications: 3

Nayden Nenkov, 22.08.1957, Novi Pazar, Shumen region, Bulgaria

Current position, grades: Vice Dean, Faculty of Mathematics and Computer Science

University studies: Shumen University

Scientific interest: Artificial Intelligence, E-learning, Data mining; Logic Programming

Publications: 63

Experience: 28 years university lecturer

