COMPUTER MODELLING & NEW TECHNOLOGIES 2016 20(1) 16-20

Zdravkova E, Nenkov N

Comparative analgsis of simulators for neural networks
oone and NeuroPh

E Zdravkova, N Nenkov”

Faculty of Mathematics and Informatics, University of Shumen “Episkop Konstantin Preslavsky”
115, Universitetska St., Shumen 9712, Bulgaria

*Corresponding author’s e-mail: elitca_spasova@abv.bg, naydenv@shu-bg.net

Received 1 March 2016, www.cmnt.lv

Abstract

This paper describes a comparative analysis of two simulator neural networks - Joone and NeuroPh. Both
simulators are object-oriented and java - based. The analysis seeks to show how much these two simulators
are similar and how different in their characteristics, what neural networks is suitable to be made through
them, what are their advantages and disadvantages, how they can be used interchangeably to give certain

Keywords:

neural network

neural network simulator
logical function

exclusive OR

neural network architecture

desired result. For the purpose of comparative analysis of both the simulator will be realized logic function,
which is not among the standard, and relatively complex and is selected as a combination of several

standard logical operations.

1 Introduction

Both the simulator selected for the study are Java - based
and object - oriented simulators. The used simulators are
Joone 4.5.2 and NeuroPh 2.92. Joone is object - oriented
frameworks allows to build different types of neural
networks. It is built on combining elements which can also
be expanded to build new training algorithms and archi-
tecttures for neural networks. The components are inter-
changeable with programming code modules that connect to
be performed on the data stream and be deriving obtained
information and relevant results. New components that the
user adds, can be planned and again. Beyond simulation,
Joone has opportunities for multiplatform deployment.
Joone has a graphical editor for graphically deployment and
testing of each neural network, and the teaching and testing
of many examples, the network is configured and can be
trained even from multiple remote machines. As of 2010
Joone, NeuroPh and Encog are main component - based
environments for neural networks of java - platforms. [1, 2]

Joone can be considered not only as a simulator of neural
networks such frameworks were, but as a fully integrated
development environment. Unlike its trading partners, it has
a strong focus on the code, building a neural network, but
not on the visual design. In theory Joone can be used to build
a wide range of adaptive systems (including those with mal-
adaptive elements) but generally his focus is on building
backpropagation - neural networks.

NeuroPh is lightweight frameworks allowed to simulate
neural networks. It is java - based and can be use basic for the
development of standard types of neural network architectures.
It contains well designed open source library and a small
number of core classes that correspond to basic concepts in
neural networks. There is a good graphics editor toquickly build
java - based components of neural networks [3].

2 Methodology

To be tested and analyzed both the simulator will realize
logical function, and which is relatively complex and is not
among the standard. The generated neural network calculate
the result of the following logical function:

(((A XOR B) AND C) OR D) — ((((E XOR F) AND G) OR
H)) 4 1)) AND (((J XOR K)(L XOR M)) OR (N 10))

The logical function implemented in the neural network

includes several logical operators:

* AND - Provides value 1 (TRUE) if both inputs are 1
argument.

* OR - Provides value 1 (TRUE) if at least one input
argument is 1.

* XOR - EXCLUSION OR - Provides value 1 (TRUE)
if the two input arguments are different.

+ = (implication) - Provides a value of 0 (FALSE) if the
first argument is 1, the second 0. In other cases, 1.

« 1 (Peirce's arrow NOR) - negation of the disjunction
(in logical circuits can be represented as a combination
OR - NOT). Gives a value of 1 (TRUE) if both input
argument is

First we will make the realization of simulator neural

networks Joone.

The neural network is built by JOONE 4.5.2.0.

Contains: an input layer - Input - 15 neurons,

4 hidden layers respectively:

I 15 neurons

11 with 10 neurons

111 8 neurons

IV with 15 neurons

And one output layer 10 neurons.

Learners data are taken from the file: xorl. Txt

Test examples are taken from the file: test_pattern.txt

The results are recorded in the file: results.txt

Information and Computer Technologied

COMPUTER MODELLING & NEW TECHNOLOGIES 2016 20(1) 16-20

Training set
Desired Data

[o0
=T+ "‘;”’"‘ mzmr—ﬂawwmm—»‘
! 10 8 15

10
o lj\

Input
15

eacher |

FIGURE 1 Layers of the neural network in Joone

Development of the model to reach the optimal
architecture is as follows:

First, we test neural network with I hidden layer with 15
neurons and output layer with one neuron:

After 10,000 epochs: RMSE - 7.75

After 20,000 epochs: RMSE - 6.83

Then, we test neural network with Il hidden layer (15
neurons - 10 neurons), and an output layer with 1 neuron:

After 10,000 epochs: RMSE - 4.64

After 20,000 epochs: RMSE - 3.97

It is seen that the search it textures do not give a good
enough value of error. Therefore, the development of the
model should be continued. This is done by testing
successively on following architectures:

Il hidden layers (15 neurons - neurons 15) and output
layer with one neuron:

After 10,000 epochs: RMSE - 5.57

After 20,000 epochs: RMSE - 4.77

I11 hidden layer (15 neurons - 10 neurons - neurons 10)
and an output layer with 1 neuron:

After 10,000 epochs: RMSE - 4.57

TABLE 1 Result on learning set in Joone

Zdravkova E, Nenkov N

After 20,000 epochs: RMSE - 3.93

111 hidden layers (15 neurons - neurons 10 - 8 neurons)
and output layer with one neuron:

After 10,000 epochs: RMSE - 4.27

After 20,000 epochs: RMSE - 3.03

IV hidden layers (15 neurons - neurons 10 - 8 neurons -
neurons 8) and output layer with one neuron:

After 10,000 epochs: RMSE - 4.51

After 20,000 epochs: RMSE - 3.88

IV hidden layers (15 neurons - 10 neurons - neurons 8 -
10 neurons) and output layer with one neuron:

After 10,000 epochs: RMSE - 4.38

After 20,000 epochs: RMSE - 3.76

IV hidden layers (15 neurons - neurons 10 - 8 neurons -
neurons 15) and output layer with one neuron:

After 10,000 epochs: RMSE - 4.18

After 20,000 epochs: RMSE - 3.57

IV hidden layers (15 neurons - neurons 10 - 8 neurons -
neurons 15) and output layer 10 neurons;

After 10,000 epochs: RMSE - 0.001

It is seen that the last result is satisfying and we can stop
the development of the model.

The learning set consists of 100 training examples that
we taken from the file xorl.txt. Test cases are 20 and are
located in the file test_pattern.txt.

The following table shows the results of testing with
learning set. Below are the input values - from 1 to 15, the
expected result of these inputs and the actual result. The
expected result is determined by a complex logical function,
which we described above. The actual result is the output of
the system - Joone.

Inputs Outputs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Desired Actual
00 00 00 00 00 O00O 00O 00 00 OO 00O 00 00 00 00 0.0 0.00185941651318
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0.0 0.00171267854721
00 00 00 ©00 00 ©00 OO0 00 OO 00 00 00 00 00 10 0.0 0.00174068713052
00 00 00 00 00 ©00O 00O 00 00 OO0 00 00 00 10 10 0.0 0.00171297868822
00 00 00 ©00 00 ©00 OO 00 OO 00 00 00 10 10 10 0.0 0.00171263203490
10 00 10 10 00 10 00 ©00 00 00 10 ©00 10 00 00 1.0 0.99819065530154
00 10 00 10 10 00 00O 00 00 10 00 10 00 00 00 1.0 0.99874748651663
10 10 00 10 00 10 00 00 00 10 00 ©00 00 00 00 1.0 0.99840020882580
00 ©00 00 ©00 00 ©00 OO0 00 OO0 00 00 10 10 10 10 0.0 0.00171176387902
00 00 00 00 00 ©00 00 00 00 00 10 10 10 10 10 0.0 0.00171063441000
00 ©00 00 ©00 00 O00 OO0 00 OO0 10 10 10 10 10 10 0.0 0.001711942825887
00 00 00 00 00 O00 00 00 10 10 10 10 10 10 10 0.0 0.00170547142383
00 o00 00 ©00 00 00 OO0 10 10 10 10 10 10 10 10 0.0 0.001704159243449
10 00 10 10 10 00 00 00 00 00 00 ©00 10 00 00 1.0 0.998690422813351
00 10 00 10 00 10 00O 00 00 10 10 10 00 00 00 1.0 0.99825801114161
00 10 10 10 00 ©00 OO0 00 00O 10 10 10 10 00 00 1.0 0.99859104574956
10 00 10 10 10 10 00 00 00 00 10 ©00 00 00 00 1.0 0.99866411324620
00 o00 00 ©00 00 00 10 10 10 10 10 10 10 10 10 0.0 0.00170372477138
00 00 00 00 00 10 10 10 10 10 10 10 10 10 10 0.0 0.00170383697555
00 o00 00 00 10 10 10 10 10 10 10 10 10 10 10 0.0 0.00170418058508
00 o00 00 10 10 10 10 10 10 10 10 10 10 10 10 0.0 0.00170950487012
o0 o00 10 10 10 10 10 10 10 10 10 10 10 10 10 0.0 0.00171284151805
00 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0.0 0.00171307490515
00 o00 10 10 10 00 0O 00 0O 00 10 10 00 00 00 1.0 0.99868704088361
00 00 00 10 10 10 00 00 O00 10 00 00 10 00 00 1.0 0.99886986914373
00 10 10 10 10 00 0O 00 0O 00 00 10 00 00 00 1.0 0.99879712659079
10 00 00 00 00 00O 00 00 OO0 00 00 OO0 00 00 00 0.0 0.00181573650909
10 10 00 00 00 00 00 00 00O 00 00 ©00 00 00 00 0.0 0.00181573650909
10 10 10 00 00 00 00 00 00 00 00 00 00 00 00 0.0 0.00181828998258
10 10 10 10 00 00 00 00 00 00 00 ©00 00 00 00 1.0 0.00196073740338
10 10 10 10 10 00 00 00 00 00 00 OO0 00 00 00 1.0 0.99831946230466
10 10 10 10 10 10 00 00 00 00 00 ©00 00 00 00 1.0 0.998699389310955
10 10 10 10 10 10 10 00 00 00 00 00 00 00 00 1.0 0.998776103873972
0 10 10 10 10 10 10 10 00 00 00 ©00 00 00 00 0.0 0.996709046387602
10 10 10 10 10 10 10 10 10 00 00 OO0 00 00 00 0.0 0.004418785357284
0 10 10 10 10 10 10 10 10 10 00 ©00 00 00 00 0.0 0.00182640654367
10 10 10 10 10 10 10 10 10 10 10 ©00 00 00 00 0.0 0.00179886966065
0 10 10 10 10 10 10 10 10 10 10 10 00 00 00 0.0 0.00178497066089
10 10 10 10 10 10 10 10 10 10 10 10 10 00 00 0.0 0.00178017710286
0 10 10 10 10 10 10 10 10 10 10 10 10 10 00 0.0 0.001723142165490
10 00 10 00 10 00 10 00 10 00 10 ©00 10 00 1.0 0.0 0.00170867604999

COMPUTER MODELLING & NEW TECHNOLOGIES 2016 20(1) 16-20 Zdravkova E, Nenkov N

10 10 00 00 10 10 00 00 10 10 00 OO0 10 10 00 0.0 0.00171115476091
60 10 00 10 00 10 0O 10 00 10 00 10 00 10 00 0.0 0.00194277916844
60 o00 10 10 00 ©00 10 10 00 00O 10 10 00 00 10 0.0 0.00180661004916
10 10 10 00 00 00 10 10 10 00 00 O00 10 10 10 0.0 0.00170405227369
060 o00 00 10 10 10 00 00 00 10 10 10 00 00 00 1.0 0.99872473082876
10 10 10 10 00 00 00 00 10 10 10 10 00 00 00 0.0 0.00345636992553
060 ©00 00 00 10 10 10 10 ©00 00O 00 00 10 10 10 0.0 0.001706998074978
10 10 00 10 10 00 00 00 00O 00 00 OO0 10 00 00 1.0 0.99820203498989
060 o00 10 10 00 10 00 00 O00O OO 00 00 00 00 00 1.0 0.99876787843303
10 00 00 10 10 10 00 O00 00 00 10 10 10 10 10 0.0 0.00201477197411
060 10 10 00 00 O00 10 10 10 10 00 00 00 00 00 0.0 0.00170808545531
00 10 00 00 00 O00O 00O 00 OO0 OO 00 00 00 00 00 0.0 0.001862992242455
060 00 10 00 00 O00O 0O 00O 00O OO 00 00 00 00 00 0.0 0.00208965556292
00 ©00 00 10 00 ©00O 00O 00 OO0 OO 00 00 00 00 00 1.0 0.99796070484324
060 o00 00 00 10 O00O 0O 00 00 OO 00 00 00 00 00 0.0 0.00208866209964
00 00 00 00 00 10 00 00 O00O OO 00 00 00 00 00 0.0 0.001925035898582
060 00 00 00 00 O00 10 00 00O OO 00 00 00 00 00 0.0 0.00175139675889
00 00 00 00 00 O00 00O 10 O00O OO 00 00 00 00 00 0.0 0.00172983744967
060 00 00 00 00 O00O 0O 00 10 OO 00 00 00 00 00 0.0 0.00171707163438
00 00 00 00 00 O00O 00O 00 00 10 00 00 00 00 00 0.0 0.00194790523692
00 00 00 00 00 O00O 00O 00 00 OO 10 00 00 00 00 0.0 0.00181551577185
10 10 00 ©00 00O 00 00 ©00 00O 00 00 OO0 00 00 00 0.0 0.00181828998258
060 o00 10 10 00 ©00O 00O 00O OO0 OO 00 00 00 00 00 1.0 0.998664650256829
060 o00 00 00 10 10 00O 00 00O OO 00 00 00 00 00 0.0 0.00231109937107
060 ©00 00 00 00 O00 10 10 O00 OO 00 00 00 00 00 0.0 0.00171578793161
060 00 00 00 00 O00O 0O 00 10 10 00 00 00 00 00 0.0 0.00172035245579
00 00 00 O00 00O O00O OO 00 OO 00 10 10 00 00 00 0.0 0.001794173831323
060 00 00 00 00 O00O 00O 00O O00O OO 00O 00 10 10 00 0.0 0.00172606629957
10 10 10 00 00 00O 00 00O 00 OO0 00O OO0 00 00 OO0 0.0 0.00196073740338
60 o00 00 10 10 10 00O 00O O00O OO 00 00 00 00 00 1.0 0.99875045408016
00 00 00 00 00 00 10 10 10 00 OO 00 00 00 00 0.0 0.00170605685128
60 10 110 10 10 10 10 10 10 10 10 10 10 10 00 0.0 0.00172491821548
00 00 10 10 10 10 10 10 10 10 10 10 10 10 00 0.0 0.00172441171231
10 10 10 10 10 10 00 00 00O 10 10 10 00 00 00 1.0 0.99876893064456
00 10 00 10 10 10 0O 00 00O 10 10 10 10 00 00 1.0 0.998708135281306
00 10 10 10 00 ©00O 0O 00 00O 10 10 10 00 00 00 1.0 0.99862109900078
60 o00 o00 10 10 10 10 10 10 10 10 10 10 10 00 0.0 0.00171646520616
00 00 00 00 10 10 10 10 10 10 10 10 10 10 00 0.0 0.00170500832053
060 o00 00 00 00 10 10 10 10 10 10 10 10 10 00 0.0 0.00170441208624
00 00 00 00 00O 00 10 10 10 10 10 10 10 10 00 0.0 0.00170422833047
060 00 00 00 00 O00 00O 10 10 10 10 10 10 10 00 0.0 0.00170494386384
00 00 00 O00 00 00 OO 00 10 10 10 10 10 10 00 0.0 0.001707391479248
060 00 00 00 00 O00O 00O 00 00 10 10 10 10 10 00 0.0 0.00172391240963
0 00 10 10 10 10 10 10 10 10 10 10 10 00 00 0.0 0.00179535552546
60 o00 00 10 10 10 10 10 10 10 10 10 10 00 00 0.0 0.00175517036174
00 00 00 00 10 10 10 10 10 10 10 10 10 00 00 0.0 0.001707701495688
060 o00 00 00 00 10 10 10 10 10 10 10 10 00 00 0.0 0.001706150804015
00 o00 00 O00 00O 00 10 10 10 10 10 10 10 00 00 0.0 0.001705704003614
00 00 00 ©00 00O 00 00O 10 10 10 10 10 10 00 00 0.0 0.00170749323605
00 ©00 00 00 00 O00 00O 00O 10 10 10 10 10 00 00 0.0 0.00171540639749
00 00 00 10 10 10 10 10 10 10 10 10 00 00 00 0.0 0.00175856759291
60 o00 00 00 10 10 10 10 10 10 10 10 00 00 00 0.0 0.00170792028372
00 o00 00 00 00 10 10 10 10 10 10 10 00 00 00 0.0 0.00170627806636
060 ©00 00 00 00 O00 10 10 10 10 10 10 00 00 00 0.0 0.001705806627616
00 o00 00 O00 00O ©00 00O 10 10 10 10 10 00 00 00 0.0 0.00170767275065
60 ©00 00 10 10 10 00O 00 00 OO 00 10 00 00 00 1.0 0.99864765385988
10 10 10 10 00 oO00 00 00 00 10 10 10 10 00 00 1.0 0.998167383168365
60 10 00 10 10 10 00 00 O00 OO 00 00 00 00 00 1.0 0.99875043991273
10 00 10 10 00 00 00 00 00 10 10 10 10 00 00 1.0 0.998158499362219

Inputs Output

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Desired Actual

00 10 10 00 10 10 00 10 10 00 1.0 10 00 10 10 0.0 0.001705444100867728
00 10 10 10 00 10 10 10 00 10 1.0 10 00 10 10 0.0 0.0017365073818188474
00 10 10 10 10 00 10 10 10 10 00 10 10 10 10 0.0 0.0017126790834616611
00 10 10 10 10 10 00 10 10 10 1.0 10 00 10 10 0.0 0.0017221518565343809
00 10 10 10 10 10 10 00 10 10 1.0 10 10 10 00 0.0 0.0017881340101438775
10 00 00 10 O00 00 10 00 00 10 00 00 10 00 00 1.0 0.8408661190565192
10 00 00 00 10 00 00 00 10 00 00 00 10 00 00 0.0 0.0017213972306672999
10 00 00 00 00 10 00 00 00 00 1.0 00 00 00 00 0.0 0.0018150456091549265
10 00 00 00 00 00 10 00 00 00 00 00 10 00 00 0.0 0.0017396394623614357
10 00 00 00 ©00 00 00 10 00 00 00 OO0 00 00 10 0.0 0.0017129149981214703
00 00 00 10 00 10 00 10 00 10 00 10 00 00 00 0.0 0.022991489166898076
00 o00 00 10 10 00 00O 10 10 00 00 10 00 00 00 0.0 0.0018174232780409597
00 00 00 10 10 10 00 00 00 10 1.0 10 00 00 00 1.0 0.9987247308287605
00 o00 00 10 10 10 10 00 00O 00 00 10 00 00 00 1.0 0.9935189616059639
00 00 00 10 00 O00 10 00 00 10 00 00 10 00 00 1.0 0.8113680710622061
10 10 10 00 10 00 10 00 10 00 1.0 00 10 10 10 0.0 0.0017054508579993635
10 10 10 00 00 10 10 00 00 10 1.0 00 10 10 10 0.0 0.0017108325172039915
10 10 10 00 O00 00 10 10 10 00 00 00 10 10 10 0.0 0.001704052273698014
10 10 10 00 00 00 00 10 10 10 1.0 00 10 10 10 0.0 0.0017046034834530507
10 10 10 00 10 10 00 10 10 00 1.0 10 00 10 1.0 0.0 0.0017054124015384057

18

Information and Computer Technologies

COMPUTER MODELLING & NEW TECHNOLOGIES 2016 20(1) 16-20

In the above table are again described input values which
have already from training set. Here we have 20 examples.
In the last two columns are the result which must be pre-
pared according to the logical function, and actual result
from the system - Joone.

The designed neural network can be used to predict the
output of the implemented logic function. It gives good
results on learning set and on examples of the test set.

It is follows to implement the same architecture of the
neural network simulator NeuroPh.

/ A A T V. O N
< =g 3 DN

Zdravkova E, Nenkov N

results are as follows - the value of neurons in the hidden
layer are 0.101 and 0.902; value of the neuron in the output
layer is 0.125. Conduct a second test with values 1, 0. The
results are as follows - the value of neurons in the hidden
layer are respectively 0.839 and 0.998; value of the neuron
in the output layer is 0.871.

We see here that the results are good. Unlike the previous
function that failed to give good result after training.

Now test the neural network with the same architecture
in simulator Joone [4].

Result after 20,000 epochs: RMSE - 0,29.

The following table shows the input values of the
standard logical function and the corresponding result for
these input values. The last column shows actual output
from the system - Joone.

TABLE 3 results on Exclusive OR in Joone

FIGURE 2 Neural network in NeuroPh

The neural network has again four hidden layer neurons.
Its structure is as follows - input layer (15 neurons), output
layer (10 neurons), | hidden layer (15neurons), Il hidden
layer (10 neurons), I11 hidden layer (8 neurons), IV hidden
layer (15 neurons).

In testing and training with the same learning set it
proved that the neural network is not trained and cannot
properly classify examples of the test set. Training and
learning set are the same as those used in the previous
simulator Joone.

To be completed research we including an example of
realization of the standard logical function - exclusive or
(XOR). This is a logical function which gives true when one
of the input statements is true and the other is false.

Neural network, realize this logical function is shown in
the following figure. It has one neuron in the input layer, two
neurons in the hidden layer and one neuron in the output layer.

DataSet: eXOR
In1 In2

J

/]
T000
LY

TFX

Q00

b}
Layer 3

T~

1

Outputs: | Out 1

FIGURE 3 Neural network realizes a logical function “exclusive or" in
NeuroPh

On the structure of the neural networkis used the results
from "Research of simulators for neural networks through the

implementation of multilayer perceptron”. (Zdravkova, 2015).

The network is fully trained after 1900 iterations. After
learning of the network supplying as input values 1 1. The

19

Inputs Output
1 2 Desired Actual
0 0 0 0.010592225910198724
0 1 1 0.6618289936765938
1 0 1 0.6718835779208182
1 1 0 0.6819571896978877
Training Set m
O l o
input &—F—*Hidden —Fl—*Output — . '~ |
2 2 1 Teacher

e

~\

Results

FIGURE 4 Neural network realized "exclusive or" in simulator Joone

It is noted that the results for this logical function here
are not as good as in the simulator NeuroPh.
The first logical function here also gave a good result.

3 Conclusions

After the conducted tests it shows that both the simulator
for neural networks have some peculiarities. Both
simulators are java - based and object - oriented. But they
have different results in tests with certain types of neural
networks. At the same architecture of the neural network
(the same number of layers and neurons) and identical sets
of test data, the both simulator give different results.

As the results shows, the simulator Joone gives much
better results in the testing of arbitrary complex logical
function, which is not among the standard. In this simu-
lator there is a very good opportunities to create new types
of algorithms and architectures of neural networks.

The simulator NeuroPh does not give good results in
tests with random set, complex logic functions. Basic on a
tests we can observe, that NeuroPh can be used in standard
logic operations and it is suitable for beginners in the crea-
tion of neural networks programmers. The simulator Joone
can be used by advanced programmers of neural networks.

Information and Computer Technologies

COMPUTER MODELLING & NEW TECHNOLOGIES 2016 20(1) 16-20 Zdravkova E, Nenkov N

References

[1] Heaton J T 2005 Introduction to Neural Network with Java Paperback [4] Zdravkova E 2015 Research of simulators for neural networks through

[2] David J Artificial Neural Network. Methods and Applications, the implementation of multilayer perceptron, Information
Livingstone Technologies, Management and Society, The 13th International

[3] Suzuki K Artificial Neural Networks Industrial and control engineering Conference inInformation Technologies and Management 2015 55-6
applications

AUTHORS 4‘

'@

Elitsa Spasova, 15.02.1988, Bulgaria

Current position, grades: assistant in Shumen University

University studies: Master in Atrtificial Intelligence

Scientific interest: Artificial Intelligence, Neural Networks, Genetic Algorithms
Publications: 3

Nayden Nenkov, 22.08.1957, Novi Pazar, Shumen region, Bulgaria

Current position, grades: Vice Dean, Faculty of Mathematics and Computer Science
University studies: Shumen University

Scientific interest: Artificial Intelligence, E-learning, Data mining; Logic Programming
Publications: 63

Experience: 28 years university lecturer

20
Information and Computer Technologies

