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Abstract 

This paper presents a fast top-down visual attention method to downsize the search space of template matching. Such a method first 

generates patterns representing the local structures, and then calculates the pattern distributions representing the template and its 

surroundings. From here two separate operations are performed: the "pattern weight" is first introduced, which describes how well a 

certain pattern is correlated to the template, and then weights of all patterns are calculated for later reference. This is the "off-line" 

operation, and in comparison the "on-line" operation only calculates the pattern of each pixel, whose weights can be indexed 

conveniently from the off-line results. With all pixels' pattern weights calculated, the weight image is ready, from which we can 

extract the region of interest for subsequent matching. Experiments showed that our method obtained at least 6.21 times speed-ups 
over the state-of-the-art methods with little or no loss in performance. 
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1 Introduction 

 
Template matching (TM) is defined as searching for a 
sub-window (referred as candidate in the rest of this 
paper) that is most similar to a given template in a larger 
reference image. The similarity is usually measured as a 
cost function, e.g., product Cross Correlation (CC) [1], 
Normalized Cross Correlation (NCC) [1, 2], Zero-mean 
Normalized Cross Correlation (ZNCC) [1, 3], Sum of 
Absolute Differences (SAD) [4], Sum of Squared 
Difference (SSD) [5,6], Hamming Distance [7]. NCC 
and ZNCC are widely used due to their robustness to 
linear brightness variations [3].  

The original algorithm of TM needs to search the 
entire space to get the best match, which is a time 
consuming procedure and thus limits its application in 
real-time environments not to mention on devices with 
limited computational resources. Much work has been 
explored to accelerate the computation of TM, which can 
be categorized into two aspects [2]. One aspect is to find 
an efficient representation of the template which enables 
fast computation of the cost function, e.g., Fast Fourier 
Transform (FFT) [1], Walsh-Hadamard transform [5], 
and Haar-like binary features [2]. Other techniques aim 
to reduce the search space or early prune the 
computation where the best match unlikely locates. For 
example, lower bound-based methods [5, 8] were used to 
accelerate the computation of SSD, while upper bound-
based methods [3, 9-11] were used for NCC. Bound-
based methods were more efficient, yet the order in 
which the candidates were examined affected the run 
time of the algorithms. A dual-bound method proposed 
in [6] obtained the best possible runtime by using a 

priority queue to determine an optimal ordering for 
examining the candidates. These efforts obtained high 
computation reduction. However, the run time of bound-
based methods is data-dependent and may have no 
advantages over full space searching methods in the 
worst case. 

Visual attention helps humans to fast focus on the 

information of interest when dealing with a huge mass of 

information [12, 13]. This property encourages 

researchers to bring it to machine vision systems. A 

considerable amount of research in cognitive science and 

computer vision has been conducted to understand and 

model visual attention mechanisms. Most of the research 

are concentrated on bottom-up attention (also called 

stimuli-driven) and relative models are built to analyse, 

which parts of the image attract human's attention in free 

viewing (for reviews please refer to [12, 14, 15]). 

However, the importance of the top-down (or task-

driven) modulation have been emphasized in recent 

years [12, 16-18], and the integration of bottom-up 

saliency and top-down modulation models have been 

widely explored in [12, 16-19]. These models first 

computed the saliency maps based on the colour, 

intensity, and orientation features. Then top-down 

modulation was realized either by increasing the saliency 

on the expected location or increasing the weights of 

some specific features. Advances in visual attention are 

beneficial for solving some challenging problems in 

computer vision, e.g. object detection [16, 18, 19], 

tracking [20]. Nevertheless, some of these models 

involve time-consuming procedures, and current top-

down models are mostly based on the bottom-up stimuli, 

which cannot deal with the situations in which the object 
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does not generate strong enough stimuli. 

In this paper, a fast top-down visual attention method 

is proposed to reduce the search space of TM. The 

method consists of two parts: (1) a ROI is extracted 

based on the proposed top-down visual attention model; 

(2) ZNCC-based template matching is performed at each 

candidate of the ROI to get the final match. In the first 

part, the proposed method represents the local structure 

by patterns and builds pattern distributions for the 

template and the background, respectively. Note that, we 

can use a representative image containing the template 

(see Figure 1) or a set of images (see in Section 4.3) to 

empirically evaluate the pattern distribution for the 

background. If a representative image is used, we 

artificially warp the image and build pattern distributions 

with these warped images to obtain small scale 

invariance and in-plane rotation invariance. Then, 

pattern weights are calculated off-line by enhancing the 

template (referred as the specific object) patterns while 

suppressing the distracting background patterns 

simultaneously. These weights indicate how well the 

patterns are correlated to the specific object. For the on-

line process, we only need to calculate the pattern for 

each pixel in the reference image and get the 

corresponding pattern weight by indexing in the learned 

model. This is the generation of the weight image. Then, 

the average weight of each candidate is computed by the 

integral image [21] and the one with highest average 

weight is the centre of the region of interest (ROI) which 

is extracted for subsequent template matching. The term 

"top-down" is referred because the generation of the 

weight image is controlled by the top-down knowledge, 

i.e. the appearance of the specific object showed in the 

template. Experiments show that our method obtains 

30.90, 6.21, 24.08, 2.97 times speed-ups over a 

sequential implementation of FFTs [22], a state-of-the-

art ZNCC-based method named Two-stage extended-

mode Partial Computation Elimination (TPCE) [11], a 

state-of-the-art SAD-based method named Partial 

Distortion Elimination (PDE) [4] and the highly 

optimized implementation based on FFT in openCV 

(called HFFT for short, see in http://opencv.org), 

respectively with little or no lose in performance. The 

advantage and novelty of our method mainly include: 

 Comparing to bound-based methods, the run time 
of the proposed method is data independent. 

 We propose a top-down visual attention model to 
downsize the search space. In this model patterns 
represent local structures and the pattern weight 
describes how well a certain pattern is correlated 
to the template. Using patterns as the stimuli and 
pattern weights as the strength of stimuli, the top-
down control is realized by setting pattern 
weights learned off-line. 

This paper is organized as follows. Section 2 is an 

introduction of ZNCC-based TM. Section 3 describes the 

details of the proposed method. In section 4, we verify 

the method with experiments and compare it with four 

fast TM algorithms: FFTs [22], TPCE [11], PDE [4], and 

HFFT. Section 5 gives the conclusion of this paper. 

 
FIGURE 1 The flowchart of the proposed method. The red rectangle denotes the specify object to be detected (i.e. the template) 

2 Template Matching Using ZNCC 
 
Let I and T denote the reference image and the template, 

respectively. The size of I is M×N pixels, while the size 

of T is m×n pixels, where m≤M and n≤N. The similarity 

between T and I at location (x,y) can be given by:  
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The original full searching algorithm needs to scan 

the whole reference image and computes the ZNCC 

values for all candidates. Therefore, the total computation 

includes mnJ additions and mnJ multiplications, where 

J=(M-m+1)×(N-n+1) is the number of candidates. It can 

be reduced to 6MNlog2(MN) additions and 6MNlog2(MN) 

multiplications by using FFT [1]. 

 

3 The Proposed Top-Down Visual Attention Method 

 

In this section, we first introduce the calculation of local 

structural patterns. Then, the proposed visual attention 

model is established by estimating and analysing pattern 

distributions for the template and the background using a 

representative image. At last, we describe the detection 

procedure from reference images based on the acquired 

visual attention model. 

 

3.1 LOCAL STRUCTURAL PATTERN 

REPRESENTATION 

 

Intensity, colour and orientation have been commonly 

used in visual attention computational models [12]. In 

this study, we use binary strings as an efficient 

representation of patterns and use patterns in our attention 

model. This idea comes from the Local Binary Patterns 

(LBs) [23], which own two advantages. First and most 

importantly, the feature space of LBs is a finite set, which 

enables us to establish a table to save the properties of 

patterns. Thus, once the properties (i.e. pattern weights) 

have been learned from the representative image off-line, 

we can get the weight of a certain pattern in the reference 

image by indexing. Secondly, LBs are more robust to 

illumination changes [23] than intensity and colour 

features, and more efficient than orientation features 

which often involve convolutions with Gabor filters. 

 LBs, first introduced by Ojala et al. [23], encode the 

pixel-wise information in an image, and have been 

widely used in texture classification [24] and face 

recognition because of its simplicity, efficiency, 

grayscale invariance and satisfactory discrimination [25]. 

LBs describe the relationship between the centre zc and 

its P neighbours z0, z1,…, zP-1 (see Figure 2(a)). Formally, 

1
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( ( ) ( ))2 , ( )
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 , (3) 

where I(zi) denotes the grayscale value at pixel zi. A 

threshold t is used as follows [25] (t =3) to increase the 

robustness in flat areas: 

1

, 0
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P i
P r i ci

LBP s I z I z t



   . (4) 

In this study, we make some changes to the sampling 

points as follows: 16 points are sampled around the centre 

similar to the DAISY configuration [26] as shown in 

Figure 2(b). Two rings are used to make the local 

structural pattern more distinctive. Six points are sampled 

equally on the inner ring while ten points are sampled 

equally on the outer ring. The radius of the inner ring is r, 

while that of outer ring is 2r. Experiments showed that 

setting r=5 can obtain the best performance. We use a 

Gaussian weighted sum of the grayscale value in the 

neighborhood instead of the grayscale value at pixel zc 

and zi, i = 0, 1, …,15 to deal with local distortions. The 

weighted sum is realized by a convolution with a 3×3 

Gaussian kernel [1 2 1]T[1 2 1], where []T is matrix 

transposition. 

 
FIGURE 2 (a) The centre pixel zc and its eight neighbours on the ring of 

r for P=8; (b) The configuration of DAISY_LBP. The small yellow 

circle denotes the centre; the large green circles denote 16 sampling 
points and the size of these circles corresponds to the smoothing range 

to deal with local distortions 
 

The convolution only needs four additions and two 

multiplications for each pixel. Three convolutions with 

this kernel are used for sampling points on the outer ring, 

while two and one for points on the inner ring and the 

center point, respectively. Using (4), we get a 16-bit 

binary pattern f ( f∈[0,65535] ) termed as DAISY_LBP. 
 

3.2 THE PROPOSED TOP-DOWN VISUAL 

ATTENTION MODEL 

 

The basic insight of our model is that a pattern f gets 
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more saliency thus rewarding a higher weight if it takes 

place more frequently in the target than in background. 

Inspired by this insight and the saliency using natural 

image statistics model (SUN) [27] which performed well 

in predicting people's fixations in free viewing, we set up 

our top-down visual attention model. Let C=1 denote a 

point belonging to the target, C=0 denote that of the 

background, L denote the location of a pixel, and F 

denote the pattern of a pixel. Assuming that patterns and 

locations are independent, and conditional independent 

for given C=1, the saliency sz can be defined as: 

( | 1)
( 1| , ) ( 1| )

( )

z
z z z z

z

p F f C
s p C F f L l p C L l

p F f

 
      


, (5) 

where fz  is the pattern at pixel z. Since we have no priors 

about the location of the target, p(C = 1|L = z) can be 

ignored in (5). So (5) can be rewritten as: 

( | 1) / ( )z z zs p F f C p F f    , (6) 

Using (6), we need to evaluate the pattern 

distributions for both the target and the background. The 

resulting saliency thus enhances the patterns of the target 

while it suppresses the patterns of distracting background. 

Note that useless target patterns are also suppressed if the 

background activates the same patterns more frequently. 

In our work, the pattern distribution for the target is 

evaluated using the template, while the distribution for 

the background is estimated using a representative image 

or a set of images. Let pk, k=0,1,… ,65535 be the 

probability of fz=k in the target (the numerator in (6)), pc,k 

be the probability in the background (the denominator in 

(6)}), then the weight wk of the pattern k=fz can be 

calculated as: 

,/ , 0

0, 0

k c k k

k

k

p p p
w

p


 


. (7) 

In this way, wk implies the top-down control to the 

generation of the weight image. 

We compute the whole set of wk, k=0,1, …,65535 for 

a given template, and save them in a table during the off-

line training phase. We also artificially warp the 

representative image to obtain small scale (0.85,1.15) and 

in-plane rotation(-15o,15o) robustness. 7 scale bins and 7 

in-plane rotation bins are used in steps of 0.05 and 5o, 

respectively, yielding 49 warped images. At last, wk, 

k=0,1, …,65535 is normalized and quantized to [0,255], 

which can be saved in a byte. The training phase is 

summarized in Table 1. 

 

TABLE 1 Algorithms for off-line training and on-line detection 

The off-line training algorithm 

Input: a representative image Irep and a template.                            Output: the top-down visual attention model W={wk, |k=0,1, …,65535}. 

(1) Warp Irep using scale and in-plane rotation transform to get 49 images: Irep,1, Irep,2, …,Irep,49. 

(2) For i=1,2, …,49, compute DAISY_LBP at every pixel in Irep,i. Compute the histograms of patterns in the template histt  and the representative 

image histr. 

(3) For k=0,1, …,65535, compute pk  and pc,k from histt and histr., and calculate  wk  according to Equ. (7). 

(4) Normalize and quantize wk to [0,255]. 

The on-line detection algorithm 

Input: the reference image Iref, and model W={wk, |k=0,1, …,65535}                        Output: best matching position and score. 

(1) Compute DAISY_LBP at every pixel in image Iref,. 

(2) Assign wfz to pixel z to generate the weight image. 

(3) A sliding window is run across the weight image to get the location (xopt, yopt) with maximum average weight by the integral image. 

(4) Extract the ROI. 

(5) HFFT is performed within the ROI to yield the final match. 

 

3.3 FAST DETECTION FROM REFERENCE IMAGES 

BASED ON THE SALIENCY MODEL 
 

For the on-line detection phase, we first get the 

DAISY_LBP fz for each pixel z in the reference image. 

Then, a weight image is generated by assigning wfz to 

pixel z. Let the size of template be m×n. A sliding 

window of m×n is used to get the average weight of each 

candidate, which can be accelerated by the integral 

image. The candidate with the maximum average weight 

is considered as the centre of ROI, denoted by (xopt, yopt). 

The size of ROI is decided according to the experimental 

results of the Euclidean distance between the ground truth 

and (xopt, yopt), which will be discussed in section 4.1. 

Finally, HFFT is performed within the ROI to yield the 

final match. The on-line detection phase is summarized in 

Table 1. 
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Therefore, the computation of the on-line phase 

includes three convolutions with a 3×3 kernel (12MN 

additions and 6MN multiplications), the computation of 

patterns (16MN comparisons), the integral image (4MN 

additions),  the average weight (4MN additions and MN 

comparisons) and TM within ROI (6WHlog2(WH) 

additions and 6WHlog2(WH) multiplications with the 

size of ROI W×H pixels). The proposed method 

eliminates J-JROI candidates with an overhead of 20MN 

additions, 17MN comparisons and 6MN multiplications. 

Here J and JROI denote the numbers of candidates in the 

reference image and ROI, respectively. In comparison, 

FFT needs 6MNlog2(MN) additions and 6MNlog2(MN) 

multiplications. 
 

4 Experimental results 

 

4.1 EXPERIMENTS ON IMAGES WITH GAUSSIAN 

NOISE 

 

Dataset. Forty images with size 640×480 are randomly 

chosen from MIT database 

(http://people.csail.mit.edu/torralba/images/), which is 

mainly concerned with indoor and urban scenes (see 

Figure 4). Five different levels of Gaussian noise with 

peak signal-to-noise ratio (PSNR) values of 27, 24, 21, 

18, and 15 are added to each image of the dataset, 

respectively. Two template sizes 50×50 and 100×100 

are used, and for each size 10 not-too-smooth templates 

are randomly chosen from each image. Therefore, there 

are 4000 matches in total (a match is defined as the 

most similar candidate found in a reference image). 
 

Results. We evaluate the performance of the proposed 

method with different Gaussian noises as well as different 

configuration of P sample points described in Section 3.1. 

For P =8, the original LBs are employed; for P =12, the 

configuration of two rings with six points equally 

sampled on each ring is performed; and for P =16, the 

configuration is depicted in Figure 2(b). We compute the 

Euclidean distance d between the ground truth and the 

centre of the ROI (xopt, yopt), and draw the curve of 

#(d<x)/ Total  to x for each noise level as depicted in 

Figure 3. Here, #(d<x) denotes the number of matches 

with d<x and Total (Total =40×10) denotes total matches 

in the experiment with the same noise level and P. We 

can see that (xopt, yopt) is closer to the ground truth with 

larger P. We do not investigate larger P than 16 (e.g. 32) 

because it needs too much memory for the weight tables. 

Thus, the suggested value of P is 16 for our method. 

When P =16, more than 75% and 89.5% of the total 

matches can be found whose distance is less than 10 

pixels on sizes 100 × 100 and 50 × 50, respectively, and 

more than 98.25% and 99% of the total matches whose 

distance is lesser than 50 pixels on sizes 100×100 and 

50×50, respectively. The size of ROI is set to be (m+99) 

× (n+99) for the following experiments according to this 

experiment, where m×n is the size of the template. 

Therefore, the number of candidates in ROI is 

100×100=10000. Note that a smaller size of ROI contains 

less candidates in ROI thus leads to less computation. 

However, it may miss the most promising candidate. 

 
FIGURE 3 The results with Gaussian noise. The X-axis corresponds to the Euclidean distance d between the groundtruth and the center of extracted 

ROI (xopt, yopt). The Y-axis equals to #(d<x)/Total, where #(d<x) denotes the number of matches with d<x and Total (Total =40×10) denotes total 
matches in the experiment with the same noise level and P 

4.2 EXPERIMENTS ON IMAGES WITH 

TRANSFORMATIONS 

 

In this section, we compare our method with FFTs [22], 

TPCE [11], PDE [4] and HFFT. Demos for FFTs, 

TPCE and PDE are available at 

http://cvlab.lums.edu.pk/pce. The parameters of TPCE 

are set according to [11]. All algorithms are based on 

ZNCC except for PDE, which is a full search 

equivalent SAD-based algorithm. Five transformations 

were evaluated similar to [7]: small in-plane rotation, 

small scale changes, illumination changes, blur, and 

JPEG compression. All algorithms are implemented in 

C++ and run on an Intel Core2 Duo CPU E4400 2.00 

GHz/2G RAM computer. 

Dataset. The dataset is from OX database 

(http://www. robots.ox .ac.uk/~vgg/research/affine/). We 

use three groups of images (see Figure 4), which are 
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designed to test the robustness to illumination (Leuven), 

blur (Bikes), and Jpeg compression (Ubc). Six images in 

each group, we choose the first as the representative 

image and run the algorithms in the other five images. To 

evaluate the robustness to small geometrical changes, we 

create two data sets for scale and rotation changes. For 

small scale changes, Graffiti is warped to generate 10 

images with scale randomly chosen in [-0.85, 1.15], and 

for in-plane rotation changes, Boat is rotated to yield 10 

images with rotation angles in [-15o, 15o]. Therefore, we 

have five groups to evaluate these algorithms under the 

five transformations. For each group, five template sizes 

(32×32, 50×50, 64×64, 100×100, 128×128) are used and 

40 templates are randomly chosen for each template size, 

yielding 7000 (5×(40×5×3+40×10×2)) matches. 

Templates with a standard deviation smaller than 60 are 

skipped to avoid the flat regions such as the blue sky in 

Ubc. Note that the templates are extracted from the 

representative image. 

Results. Let "ROIR", "FINALR" denote the results of 

ROI extraction and the final results of proposed method, 

respectively. We can easily obtain the location of the best 

match according to the true homography between the 

representative image and the reference image. The 

Euclidean distances d between the ground truth and the 

results by these algorithms are computed. We regard a 

match as a correct match if d is smaller than five pixels 

(meaning that the intersection of the detection and the 

ground truth exceeds 84% of the ground truth). The 

detection rate is defined as the number of correct matches 

with respect to the number of total matches. The speed-

ups over FFTs in run time is defined similar to [11]. 

Results are showed in Figure 5. Note that the similarity 

threshold ρth of TPCE is empirically set to 0.9, meaning 

that TPCE will skip the candidates with a similarity 

smaller than 0.9, which explains the low detection rates 

of TPCE. A smaller ρth may increase both the detection 

rate and the run time. For example, setting ρth =0 will lead 

to full search equivalence. We do not consider smaller ρth 

but use the parameters in [11] if not specify. As showed 

in Figure 5, comparing with ZNCC-based algorithms, the 

detection rates of PDE are less than 0.38 for Leuven, 

indicating that SAD is not robust to illumination changes. 

Our method yields the same or very close detection rates 

as the full search ZNCC-based algorithms (FFTs and 

HFFT) for Leuven, Ubc and Graffiti, and performs better 

for Boat on sizes smaller than 100×100 indicating its 

robust to small in-plane rotation. However, our method 

obtains a lower detection rate than FFTs for Bikes on 

sizes larger than 50×50 because images with deep blur 

lose many textures and DAISY_LBPs are not good at 

discriminating local texture-less structures. The detection 

rate of our ROI extraction model for Boat is highest on 

sizes larger than 32×32 because the model is designed to 

be robust to small in-plane rotation ([-15o,15o]) while TM 

is not. For speed-ups over FFTs, our method obtains the 

highest speed-ups for our model can eliminate 97.78% of 

the candidates. HFFT obtains the second highest speed-

ups except for Ubc on the size 32×32. The average 

computation elimination for TPCE and PDE are 90.18%, 

73.40%, respectively, which explains that TPCE is faster 

than PDE. The average speed-ups of our method over 

FFTs, TPCE, PDE and HFFT are 30.90, 6.21, 24.08, 2.97 

times, respectively. 

 

 
FIGURE 4 Images from MIT database (the first row) and images from OX database (the second row) 
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FIGURE 5 Detection rates and speed-ups over FFTs in run time for images with illumination changes (Leuven), blur (Bikes), JPEG compression 

(Ubc), small scale changes (Graffiti) and small in-plane rotation (Boat) 

 
FIGURE 6 Comparison of the detection rate using a representative image and that using randomly chosen images to estimate the pattern distribution 

of the background 

4.3 EXPERIMENTS WITH RANDOMLY CHOSEN 

IMAGES AS BACKGROUND 
 

In the former experiments, a representative image is utilized 

to evaluate the pattern distribution of the background. 

However, there are cases that only a template is available. In 

this case, we can randomly choose a set of images to 

evaluate the pattern distribution of the background. In this 

experiment, 40 images mentioned in Section 4.1 are used to 

evaluate pc,k, k=0,1,…,65535. We repeat the experiments in 

Section 4.2. The differences of detection rates are illustrated 

in Figure 6. Let "pFINALR1" and "pFINALR2" denote the 

detection rates in Section 4.2 and section 4.3 of the proposed 

method, respectively. As we can see, pFINALR2 are exactly 

the same as pFINALR1 for Boat, and very close to pFINALR1 

for Leuven, Ubc, Graffiti and Bikes. Let |x| denote the 

absolute value of x. The maximums of |pFINALR2- 

pFINALR1| are 0.025, 0.090, 0.020, 0.060, 0.000 for Leuven, 

Bikes, Ubc, Graffiti and Boat, respectively. In all, using 

randomly chosen images to estimate the pattern distribution 

of the background does not have obvious influences on the 

performance of our method. Using the pre-computation of 

pc,k, k=0,1,…,65535, the training phase only needs to 

compute pk, which will further reduce the training time to 

less than 0.20 seconds for template size 128×128. 

 

5 Conclusions 

 

This paper proposes a fast top-down visual attention 

method to downsize the search space of TM. A texture 

pattern namely DAISY_LBP is first introduced, which 

is efficient to compute and robust to noise and local 

distortions. The pattern is used in the top-down visual 

attention model, and the pattern weight describes how 

well a certain pattern is correlated to the specific 

template. Using patterns as the stimuli and the pattern 

weights as the strength of stimuli, the top-down control 

is realized by setting the pattern weights learned off-

line. Experiments show that our method obtains 30.90, 

6.21, 24.08, 2.97 times speed-ups over FFTs, TPCE, 

PDE and HFFT, respectively with little or no loss in 

performance. 

Our current method relies on a single ROI. In future 

work, several ROIs can be extracted to further improve 

the detection rate. The number of ROIs and the size of 

ROIs should make a compromise for efficiency. We will 

investigate the effects of these two terms. Efforts will 

also be given to the integration of colour and texture 

features into the algorithm for performance 

improvement. 

 

Acknowledgments 

This work is supported by National Natural Science 

Foundation of China (no. 61005028, no. 61175032 and 

No. 61101222). 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 86-93 Shen Yiping, Li Shuxiao, Zhu Chengfei, Chang Hongxing 

93 
Computer and Information Technologies 

 

References 
 
[1] Lewis J P 1995 Fast Normalized Cross-Correlation Vision Interface 

10(1) 120-3 

[2] Tang F, Tao H 2007 Fast Multi-Scale Template Matching Using 
Binary Features IEEE Workshop on Applications of Computer 

Vision 2007 36-41 

[3] Stefano L D, Mattoccia S, Tombari F 2005 Pattern Recognition 
Letters 26(14) 2129-34  

[4] Montrucchio B, Quaglia D 2005 IEEE Trans. on Circuits and 
Systems for Video Technology 15(2) 210-20 

[5] Ouyang W, Tombari F, Mattoccia S., Di Stefano L, Cham W 2012 

IEEE Trans. on Pattern Analysis and Machine Intelligence 34(1) 
127-43 

[6] Schweitzer H, Deng R, Anderson R A 2011 IEEE Trans. on Pattern 
Analysis and Machine Intelligence 33(3) 459-70  

[7] Pele O, Werman M 2008 IEEE Trans. on Pattern Analysis and 

Machine Intelligence 30(8) 1427-43  
[8] Tombari F, Ouyang W, Stefano L D, Cham W 2011 Pattern 

Recognition Letters 32(15) 2119-27 
[9] Mattoccia S, Tombari F, Stefano L D 2008 IEEE Trans. on Image 

Processing 17(4) 528-38 

[10] Mattoccia S, Tombari F, Stefano L D 2011 Pattern Recognition 
Letters 32(5) 694-700 

[11] Mahmood A, Khan S 2012 IEEE Trans. on Image Processing 21(4) 
2099-108  

[12] Borji A, Itti L 2012 IEEE Trans. on Pattern Analysis and Machine 

Intelligence 35(1) 185-207 
[13] Carrasco M 2011 Vision Research 51(13) 1484-525 

[14] Toet A 2011 IEEE Trans. on Pattern Analysis and Machine 
Intelligence 33(11) 2131-46 

[15] Duncan K, Sarkar S 2012 IET Computer Vision 6(6) 514-23  

[16] Frintrop S, Backer G, Rome E 2005 Goal-Directed Search with a 
Top-Down Modulated Computational Attention System Proceeding 

of IEEE Conference on Computer Vision and Pattern Recognition 

Berlin Heidelberg: Springer 117-24 
[17] Navalpakkam V, Itti L 2006 An Integrated Model of Top-Down 

and Bottom-Up Attention for Optimizing Detection Speed IEEE 
Conference on Computer Vision and Pattern Recognition 2006 2 

2049-56 

[18] Fang Y, Lin W, Lau C, Lee B 2011 A Visual Attention model 
Combining Top-Down and Bottom-Up Mechanisms for Salient 

Object Detection IEEE International Conference on Acoustics, 
Speech and Signal Processing 2011 1293-6 

[19] Chang K, Liu T, Chen H, Lai S 2011 Fusing Generic Objectness 

and Visual Saliency for Salient Object Detection IEEE 
International Conference on Computer Vision 2011 914-21 

[20] Ma L, Cheng J, Liu J, Wang J, Lu H 2010 Visual Attention Model 
Based Object Tracking Advances in Multimedia Information 

Processing Berlin Heidelberg: Springer 483-93 

[21] Viola P, Jones M 2004 International Journal of Computer Vision 
57(2) 137-54 

[22] William P, Saul T, William V, Brian F 1992 Numerical Recipes. 

The Art of Scientific Computing Cambridge:Cambridge University 

Press 

[23] Ojala T, Pietikainen M, Maenpaa T 2002 IEEE Trans. on Pattern 
Analysis and Machine Intelligence 24(7) 971-87  

[24] Liu L, Zhao L, Long Y, Kuang G, Fieguth P 2012 Image and 
Vision Computing 30(2) 86-99 

[25] Pietikäinen M, Hadid A, Zhao G Y, Ahonen T 2011 Computer 

Vision Using Local Binary Patterns, London: Springer 
[26] Winder S, Hua G 2009 Brown M Picking the Best Daisy, IEEE 

Conference on Computer Vision and Pattern Recognition 2009 
178-85 

[27] Kanan C, Tong M H, Zhang L, Cottrell G W Visual Cognition 

17(6) 979-1003 

 

Authors 

 

Yiping Shen 
 
Current position, grades: PhD student of University of Chinese Academy of Sciences 
University studies: University of Science and Technology of China (2005-2009). 

 

Shuxiao Li 
 
Current position, grades: Associate Professor, Institute of Automation, Chinese Academy of Sciences 
University studies: Xi'an Jiao Tong University (1999-2003), PH.D. on Pattern Recognition and Intelligent System (2008, Institute of 
Automation, Chinese Academy of Sciences). 
Scientific interest: computer science, machine vision, object recognition 

 

Chengfei Zhu 
 

• Current position, grades: Assistant Professor, Institute of Automation, Chinese Academy of Sciences 
University studies: University of Science and Technology of China (2000-2004), PhD on Pattern Recognition and Intelligent 
System (2010, Institute of Automation, Chinese Academy of Sciences 
Scientific interest: computer science, object recognition 

 

Hongxing Chang 
 
Current position, grades: Professor, Institute of Automation, Chinese Academy of Sciences, Dean of the Integral Information 
Research Center 
University studies: Beijing University of Aeronautics and Astronautics (1982-1986), Master (1991) 
Scientific interest: Integral information processing and intelligent system, computer vision 

 


