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Abstract 

In this paper, a new modified BFGS method for unconstrained optimization problems is presented. The algorithm preserves the 

convergence properties of the famous BFGS algorithm. The relation between the new algorithm and a self-scaling quasi-Newton 

algorithm is revealed. If we assume the objective function is twice continuously differentiable and uniformly convex, we prove the 

iteration converge globally to the solution. And under some additional conditions, the superlinear convergence is given. Finally, the 

experimental results show that the proposed algorithm performs very well, which indicate that the numerical performance of the new 
algorithm is somewhat like the self-scaling quasi-Newton algorithm. 
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1 Introduction 

 

In this paper, we consider the following unconstrained 

optimization problems. See Equation (1). 

min ( ), nf x xR , (1) 

where nf : R R  is continuously differentiable. The 

BFGS method is a well-known quasi-Newton method for 

solving unconstrained problems. During the past two 

decades, the study on global convergence of the quasi-

Newton method has received growing interests. When f  

is convex, it was shown that Broyden’s class of quasi-

Newton methods converge globally if exact line search is 

used [1].When inexact line search is used, Powell [2] first 

obtained the global convergence of BFGS method. Byrd, 

Nocedal and Yuan [3] extended Powell’s results to the 

restricted Broyden’s class of quasi-Newton methods with 

Wolfe-Type line search except for DFP method. Yuan [4] 

and Wei [5] proposed modified secant equations which 

approximate the curvature of the objective function more 

accurate than the standard secant equation. On the other 

hand, in order to solve the nonconvex problems, Li and 

Fukushima [6] made a slight modification to the standard 

BFGS method.  

Recently, Lewis and Overton [7] have shown in 

numerical experiments that the standard BFGS method 

works very well when applied directly without 

modifications to nonsmooth test problems as long as a 

weak Wolfe line search is used. All the mentioned 

methods in [3, 4, 5, 6] use both the gradient and function 

values available at the current iteration. In the cases that 

the Hessian matrix has some special structures and is 

partially available. For example, in the nonlinear least 

squares problems, the above mentioned secant equations 

have been developed by Amini and Ghorbani Rizi [8]. 

Xiao [9] proposed a modified limited memory BFGS 

method for solving the unconstrained. Saman [10] 

proposed two effective hybrid conjugate gradient 

algorithms based on modified BFGS updates. In the 

paper, we will analysis how to form the approximate 

matrix and how to use the formed approximate matrix to 

replace the inverse of the Hessian matrix in the BFGS 

method. Compared to the traditional BFGS method, the 

modified BFGS is also well-defined. 

BFGS requires only matrix-vector multiplications 

which brings the computational cost at each iteration 

from O ( 3n ) for Newton’s method down to O ( 2n ). 

However, if the number of variables is very large, even O 

( 2n ) per iteration is too expensive - both in terms of CPU 

time and sometimes also in terms of memory usage (a 

large matrix must be kept in memory at all times). 

According to the idea of Li and Fukushima. In the paper a 

modified BFGS method for unconstrained problems is 

applied even if the number of variables is very large. The 

modified BFGS method can save computing time.  

The organization of this paper is as follows. In the 

next section we shall describe the new modified BFGS 

algorithm. If we assume the objective function is twice 

continuously differentiable and uniformly convex, 

according to the idea of Byrd, in section 3 we prove the 

iteration converge globally to the solution, and in section 

4 under some additional conditions we show the method 

is superlinearly convergent. In section 5 the numerical 

results of the algorithm is shown. Finally, we make 

conclusions in section 6. 

 

2 The new modified BFGS method 

 

For brevity, we first introduce some notations used in this 

paper: g = g(x ),g = f
k k

  gradient of f ; 
2G = f  
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Hessian matrix of f ; 
k kd ,λ ,  search vector/step length; 

1 1,k k k k k ks x x y g g     . 

With . we will denote the Euclidean vector norm in 

nR , as well as the corresponding operator norm of 

matrices in n n
R .  

Algorithm 2.1(the new modified BFGS method) 

Step1: Choose an initial point 1

nx R  and an initial 

positive definite matrix 
1

B , and positive constants ,   

with 0 0.5, 1      . Let 0k  . 

Step2: If 0
k

g  , stop; otherwise, go to Step3. 

Step3: For given ,k kx B , solve the system of linear 

equation 0k k kd g B  to obtain a unique optimal 

solution 
kd . 

Step4: Compute 
k , which satisfies  

1 ,k k k k k k

k k

k k k k k

s s y y

s s y s
   

T T

T T

B B
B B

B
 (4) 

where 
2

,
( )

k

k kk
k k

k

y

y sy
y c g

s




   



 

2
,k k k kif y s c g s

else

 T

 (5) 

kkkkk srggy  1 , (6)  

and 

1 1

2

3( ) 6( )k k k k k

k

k

g g s f f
r

s

   


T

 (7) 

 

then set 1k k  , go to Step2. 

 

3 Global convergence 

 

In this section, we study the global convergence of 

algorithm2.1.First we make the following assumptions: 

(1): The level set 
0

{ | ( ) ( )}D x f x f x   is contained in a 

bounded convex set D . 

(2): The objective function f  is continuously 

differentiable on D  and there is a constant 0L   such 

that for any Dyx , , 

( ) ( )g x g y L x y   . (8) 

(3): The function f  is uniformly convex, i.e., there exist 

two positive constants m  and M  such that 

2 2

( )m z z G x z M z 
T  (9) 

for all n

z R  and all x D .  

Lemma 3.1 Suppose the sequence { }
k

x  is generated 

by Alorithm 2.1.Then we have for every 0,1, ,k   

1
( ) ( ) 0

k k
f x f x


  . 

Proof: For any positive definite matrix 
1k 

B , from (2) 

we get 
1 1

( ) ( ) 0
k k k k k k k j k

f x f x g d d d 
 

    
T T

B , it implies 

that the new iteration point belongs to D . Due to (3) we 

also have 

1 1 1 1 1 1
( ) ( 1) 0

k k k k k k j k
y d g g d d d

     
     

T T

B . (10) 

Since 
1 1k k k

s d
 

 , from (10) we get 0
k k

y s 
T , this 

indicates that Alorithm 2.1 has the property if 
1k 

B  is 

symmetric positive definite, then 
kB  is also symmetric 

positive definite. 

Lemma 3.2 Let the sequence { }kx  is generated by 

Alorithm 2.1.Suppose the assumption hold. Then we can 

get  

1
max{7 , 7 } , 1, 2,

k k
y L L cC s k   . (11) 

Proof: By using (5), if 
2

k k k ky s c g sT
, we have 

k k
y y . Therefore, 

1k k k k k
y g g r s


   , from the (8), 

we have 

( )y L r s
k k k
  , (12) 

where 
1 1

2

3( ) 6( )
k k k k k

k

k

g g s f f
r

s

 
  



T

. 

From the Taylor’s formula, we get  

1 1 1

2

3( ) 3( )
k k k k k k

k

k

g s g g s g
r

s

 


    
 6L . (13)  

Substitute (13) into (12), we can get 

7 , 1, 2,
k k

y L s k  . 

In the other hand, if 
1 2

k k

k k k k k k

k

y s
y g g r c g s

s


    

T

, 

using the Taylor’s formula and (8), we also get 

1 2
( )

k k

k k k k k k

k

y s
y g g r c g s

s


    

T

(7 )
k k

L c g s  . 

According to the assumption (1), there exists a 

positive constant 
1

C , 
1k

g C , thus, we have 

1
(7 )

k k
y L cC s  . 

According to the assumption (1), there exists a 

positive constant 
1

C , 
1k

g C , thus, we have 

1
(7 )

k k
y L cC s  . 

Lemma 3.3 Let the sequence { }
k

x  is generated by 

Alorithm 2.1. Suppose 
0

B  is symmetric positive definite. 
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Then there is a constant 0H   for all 1k  , 
k

y  and 
k

s  

satisfy  

2

k

k k

y
H

y s


T
, (14) 

Consequently, for any (0,1)p  there exist positive 

constants 
1 2 3
, ,    such that, for 1k   the following 

inequality  

3

2

1

j j

j

s

s


 


  

B
. (15) 

Proof: Using Lemma 3.2, we can easily get 
2

1
max{7 , 7 }

k k

k k k

y L L cC s

y s s




T
. 

Therefore, we have 

2

k

k k

y
H

y s


T
, where 

1
max{7 , 7 }H L L cC  . From the theorem 2.1 in [11], we 

get (15). 

Our proof is completed. 

We defined set { |K k k  satisfies (15)}. 

Thus, from the right hand of (15), we have  

,
k k k
s sB  k K . (16) 

Moreover, for all k K , 

.
k k k k k k k k k k
s d g s d       B B  

So we can get  

k k
g d . (17)  

By using 
k k k

y s B  and (9), we have 

2 2

k k k k k
m s s s M s 

T
B , (18) 

where m  and M  are positive constants. 

There m 3.4 Let the sequence { }
k

x  is generated by 

Alorithm 2.1.Suppose the assumption hold. Then we get  

lim inf 0k
k

g


 . (19) 

Proof: We firstly assume 
k

g   for all k K  with 

positive constant  . Using Lemma 3.1, (16), (18) and 

k k k k k k k
s d g   B B , we can get 

0 0

2

2
0

2 2
2 2 2 2

2
0 0 0

1
( )

k k k k k

k k
k

k

k k k k

k k k

k

k k k

k k kk k

g s s s
g

s s
s

g
s m s m g m

s




  

 

 





  
 

  

    

    

  

  

T T T

T

B B
B

B

. 

It is obvious that we have derived a contradiction, so 

(19) holds. 

The above theorem is established the global 

convergence of Alorithm 2.1. 

 

4 Superlinear convergence 

 

In order to give the superlinear convergence of Algorithm 

2.1, we also need the following assumptions. Let *x  be 

the limit of the sequence { }kx . 

(4): f  is twice continuously differentiable for all x  in 

the neighbourhood of *x . 

(5): { }kx  converges to *x , where *( ) 0g x   and *( )G x  

is positive definite. 

(6): There exist two constants 
2 0M   and 0v   such 

that  

* *

2( ) ( )
v

G x G x M x x   . (20) 

Lemma 4.1 Suppose assumptions (4)-(6) hold. Let us 

define 
k  as the angle between 

ks  and 
k ksB . According 

to Byrd [3], it follows that cos k k k

k

k k k

s s

s s
 

T
B

B
, so we get   

1 cosk k ka g s  , (21)  

where 
1a  is a positive constant. 

Proof: From the assumption (2) and the definition 
ky , 

we obtain  

2

0( ) ( )k k k k k k k k ky s c g s c s g s c g s    T T T . (22) 

Combining assumption (4) and assumption (2), we 

have 
1( )G x M , 

2( )g x M , with 
1M  and 

2M  are a 

positive constants. 

So we get 

2

1 1 1

0 0

( )

( ) cos

k k k k k k k k

k k k k k

M s G s s g g s y s

c g s c g s



  


   

  

T

T
, (23) 

where 
1 , (0,1)k kx s     . 

(23) implies (22) holds, where 0

1

c
a

M


 . 

Lemma 4.2 If the assumptions (1)-(6) hold, for an 

arbitrary 0v  , we can obtain 

1

0

v

k k

k

x x






   , (24) 

and  

0

k

k

r




  , (25) 

where 
* *

1max{ , }
v v

k k kr x x x x   . 

Proof: By the assumption (4) and (5), we have the 

following inequality 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 43-47 Wu Ganzhou, Liang Haiyan 

46 
Mathematical and Computer Modelling 

 

* *

1( ) ( ) ( )g x g x g x m x x    , (26) 

where 
1m  is a positive constant. 

From (15) and Lemma 4.1, we have  

cos 1/k  . (27) 

Therefore, 

2

1

2 * 2

1 1

2
2 *

1

cos cos

cos

1

k k k k k k k

k k

k

g s g s a g

a m x x

a m x x

 





  

 

 

T

. (28)  

By (2), (3) and (28), we can get (24).It is obvious that 

(25) hold. 

Theorem 4.3 Let { }kB  and { }kx  be generated by 

Alorithm 2.1, f  satisfies assumption (4)-(6), then for 

any 0k  , we can get  

(1): 

*( ( ))
lim 0

k k

k
k

G x s

s




B
, (29) 

(2): { }kx  generated by Alorithm 2.1 superlinearly 

converges to *x . 

Proof: By using Lemma 4.1 and Lemma 4.2, we can 

easily obtain (29).Similar to the arguments of Dennis [11], 

we get  

*

1

*
lim 0

k

k
k

x x

x x









. (30) 

 

5 Numerical experiments 

 

In this section we present the results of our numerical 

experiments to compare the algorithm suppose by 

Broyden in [1] and the algorithm 2.1 in this paper. For 

brevity, we use BFGS and MBFGS to represent the 

algorithm suppose by Broyden in [1] and the algorithm 

2.1 in this paper. All the numerical experiments will be 

programmed by matlab2012b. Let us choose the same 

starting point for both BFGS and MBFGS. In algorithm 

2.1, while 310c  , 0.3, 0.8   , 
0 EB , and the 

experiment is stop when 510g  . 

(i) Problem 1. 4 4 2 2

1 2 1 2 1( ) 2 4 3f x x x x x x     , 

(ii) Problem 2. 2 2 2 2

1 2 1 2

1
( ) ( ) [2( 1) ]

3
f x x x x x      , 

(iii). Problem 3. (Rosenbrook’s function, 2n  ) 
2 2 2

2 1 1( ) 100( ) (1 )f x x x x     

(iv). Problem 4 (Cube function, 2n  ) 
3 2 2

2 1 1( ) 100( ) (1 )f x x x x     

 

Please see Table 1. 

TABLE 1 Numerical results of BFGS and MBFGS methods 

Test Functions Initial points in  fn  
*x  

*f  
BFGS MBFGS BFGS MBFGS 

(i) 
(1.25,1.25) 

(12,12) 

(45,45) 

8 
8 

8 

5 
6 

6 

41 
41 

41 

26 
31 

31 

(1,0) 0 

(ii) 
(-1.25,0.5) 
(-1.25,-1) 

(-1.25,1) 

8 
13 

7 

6 
9 

5 

41 
62 

35 

31 
42 

26 

(0.763756, 0.763679) 0 

(iii) 

(-10,10) 

(10,-10) 

(100,100) 

30 

68 

167 

12 

23 

25 

151 

341 

836 

61 

156 

235 

(1,1) 0 

(iv) 

(10,10) 

(30,80) 
(-15,15) 

52 

75 
28 

18 

23 
19 

46 

61 
72 

31 

42 
32 

(1,1) 0 

In Table 1, 
in  and fn  indicates the number of 

iteration and the number of function evaluation 

respectively. Meanwhile, x* and f* indicates minimum 

points and minimum value respectively. It can be seen 

from the comparison given above that the algorithm 2.1 

in this paper is more efficient than BFGS method for 

solving unconstrained optimization. 

 

6 Conclusions 

 

In this paper, a modified BFGS algorithm for 

unconstrained problems is proposed. If we assume the 

objective function is twice continuously differentiable 

and uniformly convex, we prove the iteration converge 

globally to the solution. And under some additional 

conditions the superlinear convergence is given. The 

method retains the scale-invariance property of the 

original BFGS method. We have preliminary numerical 

results to show its efficiency. As demonstrated in Section 

5, the reported numerical results show that the modified 

BFGS performs better than the BFGS in [1]. 
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