

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 89-96 Zhang Dajian, Lu Minyan, Wu Nan

89
Computer and Information Technologies

A model-based assurance case construction approach for
system control software

Dajian Zhang*, Minyan Lu, Nan Wu

School of Reliability and System Engineering, Beihang University, Beijing, P. R. China

Received 12 June 2014, www.tsi.lv

Abstract

As the massive damage caused by the failures of system control software becomes increasingly prominent, people pay more attention

to the construction of assurance case to demonstrate the dependability level of system control software. In this paper, a new assurance

case construction approach for system control software is proposed. Based on the metamodel of modular GSN, we give the basic

procedure and tree structure deductive algorithm of the approach, and verify our work using Brake Control software used in an

aircraft. The results show that the approach can develop assurance case effectively and efficiently.

Keywords: Software, Dependability, assurance case, GSN, modularization

* Corresponding author e-mail: greatdjz@163.com

1 Introduction

With the wide deployment of software in critical control

systems whose potential failure may cause huge damage,

the dependability of the control software has become a

major factor for proper system operation. Therefore, it is

of great importance to study on the dependability

assurance of this software. Demonstrating the expected

dependabiltiy properties of this software to provide

sufficient confidence for potential users is a key issue [1].

Traditional software development and certification are

generally based on a prescriptive standards, such as DO-

178B [2], IEC 15608 [3], ISO/IEC 15408 [4-6].

However, these certification approaches have some

deficiencies such as unclear rationale underlying some

process activities, lack of organization between evidence,

highly prescribed technical activities [7-8]. Therefore, a

new goal-basded assurance case approach is proposed

[9]. Through a clear argument structure and flexible and

effective organization of evidence, it can demonstrate the

system meet its original requirements in an explict and

structured way. This approach can overcome the

deficiencies of traditional approaches and receives

growing attention [10].

Assurance case is originally used in the safety area

[11], and gradually extended to other dependability area

[12-14]. It is defined as “a documented body of evidence

to provide a compelling justification that the systems

performing a specific task satisfies specified critical

properties in a specific environment” [15]. An assurance

case generally consists of three elements: claim,

argument, and evidence. How to represent the structure of

argument efficiently and concisely is a key problem in

assurance case research area. Many approached are

proposed [16-17]. Goal Structuring Notation (GSN) is a

popular one among these approaches [18]. It combines

rich graphical notations with modularization thinking to

present argument in an intuitive, explicit way. It can

clearly exhibit the logical relationship between product-

oriented and process-oriented evidence by establishing

the argument structure model and can be used in

qualitative or quantitative analysis to achieve the

evaluation of software dependability level [19]. However,

the rich elements in GSN also bring confusion in its

usage. Because of a lack of guidance on how to use this

powerful tool systematicly and unambiguously, the

modular elements are often abused or misused by

developers of assurance case. Therefore, the result of the

argument is strongly influenced by subjective factors,

which leads to the low effectiveness and the reduction of

confidence placed in the argument conclusion.

This paper proposes a structured development

approach for modular GSN in order to guide the

construction of assurance case for control software.

Based on the analysis of the GSN modular argument

elements, an extended GSN metamodel is proposed.

According to the metamodel, we give the progression

algorithm for constructing the core structure of assurance

case and the standard procedure of the argument

construction. We illustrate our contributions by

application to a Brake Control software system. The

results show that our approach can provide explicit

guidance and help to standardize the development process

of assurance case. It also reduces subjectivity and

ambiguity in the process, and improves the effectiveness.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 89-96 Zhang Dajian, Lu Minyan, Wu Nan

90
Computer and Information Technologies

2 Model-Based Assurance Case Construction

Approach

2.1 GSN MODEL MODULARIZATION

On the basis of in-depth study of GSN basic concepts, we

propose a modular GSN meta-model, as is shown in

figure 1-4.

Figure 1 shows the correlation of macroscopic

concepts in assurance case. As is shown above, every

assurance case has an assurance subject. Assurance case

varies from safety assurance, security assurance,

reliability assurance, dependability assurance, etc. Every

assurance subject has a central assurance objective, this

assurance objective is proposed in the form of claim, and

is the top-level objective of assurance case. An assurance

case consists of three basic parts: claim, argument and

evidence. Assurance case is presented in the form of

structured argument and GSN is one of these arguments.

Assurance case

GSN structured argument

Assurance Subject Assurance Objective

Claim

+representBy1..*

+hasSubject1

Safety assurance Security assurance Reliability assurance

Dependability assurance

Argument

Evidence

Basic Component

Structure argument

FIGURE 1 Macroscopic concept of assurance case

GSN structured argument

Inter-Module View Intra-Module View

1

1

1

1..*

FIGURE 2 Macroscopic composition of GSN structured argument

Figure 2 shows the macro composition of GSN

structured argument. GSN structured argument can be

treated as two abstract granularities: the macroscopic and

abstract argument between modules, and specific inter-

module argument. In general, for relatively simple

software systems, conducting fine-granularity argument

using basic GSN nodes can meet the requirement.

However, when we are arguing a complex large scale

system, adopting basic argument structure will make the

argument structure too big and complicated to manage,

especially when a system consists of many modules.

Introducing coordination mechanism of two-level

abstract of module view and inter-module view can deal

with this problem. Module view displays the relationship

between modules, it shows the overall argument structure

in a higher level of abstraction. Every module in the

module view represents a specific argument structure,

and an inter-module view in parallel.

Inter-Module View

ArgContentElement ArgLinkElement

SupportedBy

InContextOf

Module Contract

0..*+source/sink

0..*

1

+source/sink

0..*1

FIGURE 3 Basic concepts and correlation of module view

Figure 3 shows basic concepts and correlation of

module view. Module and contract are basic elements in

module view, module is a high-level abstraction of

specific argument structure, a contract shows the

relationship between modules and defines how a goal in

the module is supported by the argument in another

module. Modules and contracts are connected by

“supportedby” and “incontexof” elements to build the

macro view of the argument.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 89-96 Zhang Dajian, Lu Minyan, Wu Nan

91
Computer and Information Technologies

Goal

TrunkElement

SupportedBy

Strategy Solution

Justification

ContextElementInContextOf

Context

+child
0..1

+parent

0..*
+parent

*

+child

0..1

UndevelopedEntity

AwayGoal

AwayContext

AwaySolution

ModuleReference

MultiRoleElement

+child

0..1

1

+child

0..1

1

Assumption

ContractReference

PublicGoal PublicSolution

PublicContext

+undevstg 1

0..1

+undevgol 1

0..1

FIGURE 4 Concept and correlation of argument view

Figure 4 shows the concept and correlation of specific

argument view. Elements in specific argument view can

be divides to standard GSN elements and extended

modularization elements. In standard GSN elements,

goal, strategy and solution forms the backbone element of

argument, undeveloped bodies provides effective support

for the development phased in argument through the

attachment to Goal and Strategy; context, assumption and

justification are ancillary elements providing background

information for the argument, “supportedby” and

“incontexof” elements are connectors in the argument,

“public elements” (public goal, public solution, public

context) and “away elements” (Away solution, away the

context and away goal) correspond each other, and

together they provide a general mechanism for the share

of inter-module argument elements. “Public elements”

are open external interface of the argument, indicating

these elements can be referenced by other argument

modules. When referenced by other argument modules,

they must be presented in the form of “away elements”.

Module reference elements and contract reference

elements corresponds module elements and contract

elements, respectively. They can be considered as the

projection of module and contract element in the specific

argument view. The roles different elements play in the

argument are different, contract reference element can be

considered as a backbone element, “modulereference

element” is more special. Similar with “away elements”,

they come in a wide variety of roles in the argument, they

can be referred to as the backbone elements in argument

and reasoning, and they can provide background

information for argument and reasoning, so in this paper

we will define these as “MultiRoleElement”.

2.2 MODEL-BASED GSN ARGUMENT

CONSTRUCTION APPROACH

Based on the meta-model given above, we define a

Model-Based GSN Argument Construction Approach.

Because the modular GSN argument includes two levels:

macro and micro argument, we adopt the principle of

building the argument from macro to micro, and then

back to macro.

Define top claim
Premilinary establish

argument architecture
Construct Intra-

Module argument
Refine argument

architechture
Start End

FIGURE 5 Basic procedure of modular GSN Construction Approach

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 89-96 Zhang Dajian, Lu Minyan, Wu Nan

92
Computer and Information Technologies

Figure 5 shows the basic procedure of modular GSN

construction approach. Firstly, define the top-level claim

according to our argument subject, which is the ultimate

goal of our argument. Then establish the preliminary

overall argument structure according to top-level claim.

We can establish the argument structure from different

angles according to the features of top-level claim and

evidence acquired. Through the investigation and

analysis of the literature on assurance case, we found

some typical argument structures, such as functional

arguments, workflow process arguments, life cycle

arguments, system structure arguments and risk

mitigation arguments, etc. Argument structure is shown

in the form of module view. This is only the preliminary

established macroscopic module view structures, but the

specific interface between modules is difficult to specify

at the moment, specific argument structure refinement is

needed to establish step by step. Next, we need refine

each module one by one. According to the meta-model

given in the figure above and the concepts related to

instantiation, we can gradually establish argument using

top-down approach. Along with the unfolding of

argument structure, modular elements are added to the

specific structure of argument. The introduction of

modular elements means that the shared interface

between this module and other modules are changed. In

this case, we need to backtrace the overall argument,

change the module view accordingly, which is step 4.

This process might involve two cases: 1. the share

interface are changed between this module and an

existing module, this case is likely to cause changing

relations between the two modules in the module view. 2.

This module has an interaction with a module excluded in

the module view, in this case, we need to create a new

module in the module view to reflect this change.

Establishing the specific argument view, namely step

3, is the focus of the modular GSN argument

construction. The introduction of modular elements

greatly enhanced the expression ability of GSN, however,

the abuse of modular elements can lead to the unclear

role of elements, bringing chaos in the argument view

structure and further influence the macro module view.

These will bring difficulties to users to understand and

communicate on assurance case. This paper defines a

modular development approach using formal methods.

This approach can clearly demonstrate the role and the

timing of use of each modular element in constructing the

argument, eliminating the ambiguity on understanding,

and implements a systematic construction of argument.

First, we will define some primitives to describe the

process, through the combination of these primitives we

can describe the establishment process of the argument.

The process describing primitives are as followed:

Declare primitives:

Declare(SetInstance, ConceptName)

 SetInstance{instanceName1, instanceName2, …,

instanceNamen}, instanceNamei is the name of

the instance;

 ConceptName is the name of the concept;
This primitive declares the instance set “SetInstance”

of the concept “ConceptName”

Relationship defining primitives:

Define(SetInstance, LinkType, SourceInstance)

 SetInstance {instanceName1, instanceName2, …,

instanceNamen}, instanceNamei is the name of

the instance;

 LinkType is enumeration type variable,

enum{Supportedby, InContextof};

 SourceInstance is the name of the instance;
This primitive defines the relationship between

instance set “SetInstance” and instance source

“SourceInstance”. If SetInstanceØ, then this primitive

defines the LinkType argument relationship from

SourceInstance to SetInstance; if SetInstance = Ø, then

this primitive does not define any relationship.

Judge primitives:

ifContextNeeded(InstanceName)

Determine if instance “InstanceName” needs

background information

ifAssumptionNeeded(InstanceName)

Determine if instance “InstanceName” needs

assumption information

ifJustificationNeeded(InstanceName)

Determine if instance “InstanceName” needs judge

information

ifDecomposeNeed (InstanceName)

Determine if instance “InstanceName” needs to be

decomposed

Based on the primitives above, we put forward a GSN

modular constructing process as followed:

BEGIN

Declare({topGoal}, Goal)

Step_DefineContextInfo(topGoal)

Step_DecomposeGoal(topGoal)

Step_DecomposeGoal(aGoal::Goal)

ifNeedDecompose(aGoal)

 Delare({aStrategy}, Strategy)

Step_DefineContextInfo(aStategy)

Define({aStrategy}, Supportedby, aGoal)

Declare({subGoal1, subGoal2, …, subGoaln}, Goal)

Define({subGoal1, subGoal2, …, subGoaln},

Supportedby, aGoal)

 for each subGoali, i {1,…,n}

Step_DecomposeGoal(subGoali)

 Declare({awayGolname1, awayGolname2, …,

awayGolnamen}, AwayGoal)

 Define({awayGolname1, awayGolname2, …,

awayGolnamen}, SolutionBy, aGoal)

RefreshModView({awayGolname1, awayGolname2,

…, awayGolnamen}, SolutionBy)

 Declare({modname1, modname2,…,modnamen},

Module)

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 89-96 Zhang Dajian, Lu Minyan, Wu Nan

93
Computer and Information Technologies

 Define({modname1, modname2,…,modnamen},

SolutionBy, aGoal)

RefreshModView({modname1,

modname2,…,modnamen}, SolutionBy)

Declare({contrname1, contrname2, …, contrnamen},

Contract)

 Define({contrname1, contrname2, …,

contrnamen}, SolutionBy, aGoal)

RefreshModView({contrname1, contrname2, …,

contrnamen}, SolutionBy)

else

 Step_GiveSolution(aGoal)

EXIT

Step_GiveSolution(aGoal::Goal)

 Declare({solname1, solname2, …, solnamen},

Solution)

 Define({solname1, solname2, …, solnamen},

SolutionBy, aGoal)

Step_DefineContextInfo(aElement::TrunkElement)

ifContextNeeded(aElement)

Declare({contname1, contname2, …, contnamen},

Context)

Define({contname1, contname2, …, contnamen},

ContextBy, aElement)

Declare({awaycontname1, awaycontname2, …,

awaycontnamen}, AwayContext)

Define({awaycontname1, awaycontname2, …,

awaycontnamen}, ContextBy, aElement)

RefreshModView({awaycontname1,

awaycontname2, …, awaycontnamen}, ContextBy)

Declare({awayGolname1, awayGolname1, …,

awayGolname1}, AwayGoal)

Define({awayGolname1, awayGolname1, …,

awayGolname1}, ContextBy, aElement)

RefreshModView({awayGolname1, awayGolname1,

…, awayGolname1}, ContextBy)

ifAssumptionNeeded(aElement)

Declare({assumname1, assumname 2, …,

assumname n}, Assumption)

Define({assumname1, assumname 2, …, assumname

n}, ContextBy, aElement)

ifJustificationNeeded(aElement)

Declare({justname1, justname 2, …, justname n},

Jusitification)

Define({justname1, justname 2, …, justname n},

ContextBy, aElement)

Declare({awayGolname1, awayGolname2, …,

awayGolnamen}, AwayGoal)

Define({awayGolname1, awayGolname2, …,

awayGolnamen}, ContextBy, aElement)

RefreshModView({awayGolname1, awayGolname2,

…, awayGolnamen}, ContextBy)

3 Application

This chapter takes brake system software on airplane for

example to illustrate to construction of modular GSN

argument. This software is the core control software of

the landing gear brake control system on the airplane,

which collects information like wheel speed sensor signal

and braking instruction signal, and realizes the function

of braking, skid resistance, and ground protection. It is

the key software to ensure the safety of taking-off and

landing of the plane, so it must have a high-level of safety

and reliability.

(1) Define the top-level claim

The theme of this example is to ensure the

dependability of braking software, we will consider this

matter from two angles: safety and dependability. Due to

space limitations, this section only demonstrates the

argument of the safety. Therefore, we set the top-level

claim as “the braking software on the airplane is safe”.

(2)Preliminary establish the structure of argument

According to the top-level claim established above,

we can preliminary establish the structure of argument.

The nature of software safety is “the ability of not

causing an accident of the software”, concerns about the

safety of the software are derived from system accidents,

system accidents are caused by system hazards.

Therefore, to analyse software safety, we must look from

the system level. We must consider the role of the

software as a component in accident of the system, and

the contributions they make to system hazards. Analysis

of these contributing factors, proposal of safety

requirements in related software, eliminating or retarding

the danger caused by software in the system, these are the

keys to ensure software safety. Therefore, in this

example, we preliminarily established the three-tier

argument structure of “top-level claim-system hazard-

safety function”. Argument structure is shown in figure 6.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 89-96 Zhang Dajian, Lu Minyan, Wu Nan

94
Computer and Information Technologies

Software Product
Top-level

Argument Module

<<Hazard 1 Argument
Module>>

<<Hazard 2
Argument
Module>>

<<Hazard n
Argument
Module>>

<<Software Safety
Requirement 1

Argument
Module>>

<<Software Safety
Requirement 2

Argument
Module>>

<<Software Safety
Requirement 3

Argument
Module>>

<<Software Safety
Requirement n

Argument
Module>>

……

……

Top-level Argument Layer

Hazard Argument Layer

Functionality Argument Layer

FIGURE 6 Safety argument structure of braking system software

(3) Build concrete argument and elaborate argument

view

After the initial argument structure, we need to further

refine each module. According to the build process

presented in the above section, we can systematic develop

internal argument of each module. Take the top-level

argument module in software products for example:

First, declare top-level goal Declare({topGoal}, Goal)

We have declared a goal instance topGoal=Goal(“The

final implementation of ABS software meets the software

safety demands”), in which topGoal is the ultimate goal

of important argument in this module.

Then, define background information of the goal

Step_DefineContextInfo(topGoal). Realization of

software product defines and explains through

requirements, design documentation, and source code.

Therefore, we define the background information of

topGoal as Declare({contname1, contname2, contname3},

Context), in which contname1=Requirements of ABS

software,contname2=Design Specification of ABS

software,contname3=Source Code of ABS software.

After finishing the goal information definition, we can

determine whether the goal can be further decomposed.

According to the macro module structure, we further

decompose top-level goal adopting the way of risk-

orienting. Therefore, we will enter the iterative process of

goal decomposition Step_DecomposeGoal(topGoal).

Define argument strategy as Delare({aStrategy},

Strategy),aStrategy={“Argument over hazard introduced

by ABS software”}. Then, define relevant background

information for the strategy. We defined two context

elements, Declare({contname1, contname2},

Context),contname1={“Hazard list of ABS

software”},contname2={“Hazard Identification method of

ABS software”}. We also declared an Assumption

element Declare({assumname1}, Assumption),

Assumption information is given in the argument strategy

assumption1={“Hazards are independent and can be

argumented respectively”}.

Based on the information in argument strategy

background, we listed three system hazards to be

respectively argued. According to the macro argument

structure, each hazard should be argued in a separate

module, and we must use awayGoal instances to show

interface between top-level module and hazard argument

module. We will declare three, like

Declare({awayGolname1, awayGolname2,

awayGolname3}, AwayGoal),awayGolname1={“Hazard

‘Airplane can’t decelerate by braking function’ is

managed adequately”},awayGolname2= {“Hazard “Tire

blowout” is managed adequately”},awayGolname3=

{“Hazard ‘sideslipping and off tracking’ is managed

adequately”}. After finishing the declare of awayGoal

element, we didn’t declare other modular modules. By

the modular building approach above, decomposition

process of the goal is over.

Graphical results of modular argument are shown in

figure 7.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 89-96 Zhang Dajian, Lu Minyan, Wu Nan

95
Computer and Information Technologies

G 1.1

The final implementation of
ABS software meets the
software safety demands

St 1.1

Argument over hazard
introduced by ABS
software

CG 1.1

Requirements of
ABS software

CG 1.2

Design
Specification of
ABS software

CG 1.3

Source Code of
ABS software

CS 1.1

Hazard list of
ABS software

CS 1.2

Hazard Identification
method of ABS
software

A

SA 1.1

Hazards are independent
and can be argumented
respectively

G 3.1_Tire blowout

Hazard “Tire blowout” is
managed adequately

Tire blowout

C4.1 _Sideslipping and off
tracking

Hazard ‘sideslipping and off
tracking’ is managed adequately

Sideslipping and off tracking

G 2.1_Unable to decelerate

Hazard ‘Airplane can’t
decelerate by braking function’
is managed adequately

Unable to decelerate

FIGURE 7 Results of modular argument

According to the top-level argument module, the

updated module view is shown in figure 8:

Software Product
Top-level

Argument Module

Unable to
decelerate

Tire blowout
Sideslipping and

off tracking

<<Software Safety
Requirement 1

Argument Module>>

<<Software Safety
Requirement 2

Argument Module>>

<<Software Safety
Requirement 3

Argument Module>>

<<Software Safety
Requirement n

Argument Module>>

……

……

Top-level Argument Layer

Hazard Argument Layer

Functionality Argument Layer

FIGURE 8 view module

4 Conclusion

This paper has presented a systematic construction

approach for modular software assurance case. On the

basis of in-depth analysis of the argument modelling

technique, GSN, we extract the basic concepts and

terminology of modularization, and summarize the

relationships between concepts and constraints that must

be met. A new modular GSN metamodel is proposed,

which is a comprehensive, reusable description for the

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 89-96 Zhang Dajian, Lu Minyan, Wu Nan

96
Computer and Information Technologies

internal logic of modular GSN, and can be seen as the

basis of a normative argument construction process for

modular assurance case. According to the metamodel, we

give the progression algorithm for constructing the core

structure of assurance case and present the

implementation process of modular GSN argument

construction in a “macro-micro-macro” iterative way.

Our approach can help the assurance case developers

gradually extract and analyse the argument elements, and

provides a modelling process guidance for assurance case

developer. We apply our approach in an ABS software

system, which is a typical control software, to examine

the feasibility and effectiveness. Results show that this

approach can greatly enhance the development efficiency

of dependability assurance case, and can improve

systematicness, comprehensiveness and scientificity of

the assurance case itself, thus providing strong support

for ensuring the software product can reach its desired

dependability level.

At present, our approach does not include the concept

of GSN pattern and its related elements, and there is also

lack of tool supporting. These will be important

directions of our future work.

References

[1] Jackson D, Thomas M, Millett L I 2007 Software for Dependable

Systems: Sufficient Evidence? National Research Council

[2] DO-178B Software Considerations in Airborne Systems and

Equipment Certification
[3] IEC 61508 Functional Safety of

Electrical/Electronic/Programmable Electronic Safety-Related
Systems

[4] ISO 15408 Information technology — Security techniques —

Evaluation criteria for IT security — Part 1: Introduction and
general model

[5] ISO 15408 Information technology — Security techniques —
Evaluation criteria for IT security — Part 2: Security functional

requirements

[6] ISO 15408 Information technology — Security techniques —
Evaluation criteria for IT security — Part 3: Security assurance

requirements
[7] Bloomfield R, Bishop P 2010 Safety and Assurance Cases: Past,

Present and Possible Future – an Adelard Perspective Proceedings

of the Eighteenth Safety-Critical Systems Symposium
[8] Habli I, Hawkins R, Kelly T 2010 Software safety: relating

software assurance and software integrity International Journal of
Critical Computer-Based Systems 1(4) 364-83

[9] Bishop P, Bloomfield R, Guerra S 2004 The future of goal-based

assurance cases Proceedings of Workshop on Assurance Cases of
2004 International Conference on Dependable Systems and

Networks

[10] IEEE P15026-2 IEEE Standard for Systems and software
engineering - Systems and software assurance - Part 2: Assurance

case

[11] Kelly T P 1998 Arguing Safety – A Systematic Approach to

Managing Safety Cases Department of Computer Science

University of York
[12] Miller A, Gupta R 2008 Assurance Cases for Reliability: Reducing

Risks to Strengthen ROI for SCADA Systems Recent Advances in

Reliability and Quality in Design Ed H Pham Springer: London pp

465-89

[13] He Y, Johnson C W 2012 Generic security cases for information
system security in healthcare systems 7th IET International

Conference on System Safety, incorporating the Cyber Security
Conference

[14] Nakazawa J, Matsuno Y, Tokuda H 2011 Evaluating degree of

systems' dependability with semi-structured assurance case
Proceedings of the 13th European Workshop on Dependable

Computing(Pisa, Italy)ACM pp 111-2
[15] Ankrum T S, Kromholz A H 2005 Structured assurance cases: three

common standards Proceedings of Ninth IEEE International

Symposium on High-Assurance Systems Engineering (HASE 2005)
IEEE

[16] Bishop P, Bloomfield R 1998 A methodology for safety case
development Safety-Critical Systems Symposium (SAFECOMP)

[17] Cyra L, Górski J 2011 Support for argument structures review and

assessment Reliability Engineering & System Safety 96(1) 26-37
[18] Kelly T, Weaver R 2004 The Goal Structuring Notation – A Safety

Argument Notation Proceedings of Dependable Systems and
Networks

[19] Langari Z, Maibaum T 2013 Safety cases: A review of challenges

Proceedings of 1st International Workshop on Assurance Cases for
Software-Intensive Systems (ASSURE)

Authors

Dajian Zhang, born in 1982, China

Current position, grades: Ph.D. candidate
University studies: Beihang University
Scientific interest: software safety, software reliability
Publications: 2
Experience: He received his Bachelor degree in School of Information and Computing Science from Beijing Jiaotong University and now he is a
Ph.D. candidate in School of Reliability and System Engineering of Beihang university.

Minyan Lu, born in 1963, China

Current position, grades: Professor
University studies: Beihang University
Scientific interest: software dependability engineering, reliability engineering
Experience: She received her doctor degree in School of Reliability and System Engineering from Beihang University and now she is a professor
in School of Reliability and System Engineering of Beihang university.

Nan Wu, born in 1990, China

Current position, grades: postgraduate
University studies: Beihang University
Scientific interest: software reliability engineering
Publications: 1
Experience: He is a postgraduate in School of Reliability and System Engineering of Beihang university.

