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Abstract 

The deficiency of supervised discriminant information is the problem of Orthogonal Tensor Neighborhood Preserving Embedding 

(OTNPE) proposed recently for face recognition. So a dimension reduction algorithm called Supervised Orthogonal Tensor 

Neighborhood Preserving Embedding (SOTNPE) is proposed in the paper. On the basic of OTNPE, the algorithm achieves 

neighborhood reconstructions within the same class, preserving supervised class label information and neighborhood reconstruction 

information. Experiments on AR and YaleB face datasets show our proposed algorithm is efficient.  
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1 Introduction 

 

Manifold learning is an effective way of machine 

learning in recent years, which discloses geometry 

structure features hidden in data and has been 

successfully applied to data mining. Typical manifold 

dimensionality reduction algorithms include Locally 

Linear Embedding (LLE) [1], Isometric Feature Mapping 

(ISOMAP) [2], Laplacian Eigenmaps (LE) [3], Locality 

Preserving Projection (LPP) [4] and Neighborhood 

Preserving Embedding (NPE) [5]. 

NPE is the approximation of local linear embedding, 

preserving local geometry structure and neighborhood 

relations. Due to power discriminant performance, NPE 

has attracted the attention of researchers and has been 

widely used in face recognition. Nowadays researches on 

NPE are divided into following three categories 

according to the processing way of data. 

1) Vector based NPE [6-10]. These algorithms need to 

transform face image matrixes into vectors, which 

increase complexity of computing matrix to vector 

conversion.  

2) Two-dimensional matrix based NPE [11-13]. 

However, the algorithms only are limited in the row or 

column, ignoring the spatial relationship of the image 

pixels.  

3) Second-order and more order tensor based NPE 

[11-13]. These algorithms represent face image with 

second-order data, which not only preserve local 

information of the image pixel but also preserve the 

spatial structure of the image pixel [14-16]. On the basic 

of NPE, researchers proposed Tensor Neighborhood 

Preserving Embedding (TNPE) [15]. Liu et al [17] 

proposed Orthogonal Tensor Neighborhood Preserving 

Embedding (OTNPE). By orthogonalizing projections 

matrixes, OTNPE has more ability for preserving local 

geometry structure and neighbor relations and has been 

successfully applied to facial expression recognition. 

However, if the sample image data is not smooth and 

compact in manifold embedded, the discriminant 

performance of OTNPE is not satisfactory. 

Usually supervised information based on class label 

strengthens the between-class separability of samples, 

containing discriminant information. Inspired by OTNPE 

problem, a dimensionality reduction algorithm named 

Supervised Orthogonal Tensor Neighborhood Preserving 

Embedding (SOTNPE) for face recognition is proposed 

in the paper. The algorithm firstly regards multi-

dimensional face image as a multi-order tensor data, and 

then achieves approximately linear reconstruction of 

samples within the same class and gets projections. 

Projected data not only preserves the geometric structure 

and local neighborhood information but also preserves 

the between-class separability of samples. Experiments 

on AR and YaleB show that our algorithm is efficient. 

The organization of this paper is as follows. Related 

works is presented in Section 2. We discuss SOTNPE in 

Section 3. In Section 4, we present experiments for 

demonstrating the effectiveness of SOTNPE. Conclusions 

are drawn in Section 5. 

 

2 Related Works  

 

2.1 NEIGHBORHOOD PRESERVING EMBEDDING 

(NPE) 

 

Given samples  1,..., n

d nX x x R   , NPE attempts to 

search the projection matrix T  to get TY T X . There 

are some following steps for NPE: 
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1) Construct the adjacent graph G. Point sets of G 

consist of samples and common ways of selecting 

neighborhoods are k   nearest neighbors and    

neighbor-hood. 

2) Calculate reconstructive weights W. According to 

the adjacent graph G, each point can be reconstructed 

through the linear way with its k- neighborhoods. For ix  

in X, the cost of reconstruction of ix  is described with 

following function [1]: 
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where,  ,ix kO  denotes the k- neighborhoods set of 
ix .  

3) Projected data TY T X  satisfies Equation (1), we 

get: 
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where   
T

M I W I W   , constrain conditions are 

introduced as follows: 
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We replace TY T X  in Equation (2) and Equation 

(3). The optimization objective function of NPE is listed 

as follows:  

T
min T T

T T

T XMX T

T XX T I 

. (4) 

 

2.2 TENSOR NEIGHBORHOOD PRESERVING 

EMBEDDING (TNPE) 

 

TNPE is the tensors extend of NPE. Given 

 1,..., nX x x  in tensor space 1 2 ... kI I I
R

  
. The 

destination of TNPE is to search l projection matrixes 

 
'

' , 1...i im mi

i iU R m m i l


    to preserve local 

neighborhood reconstruction. The objective function of 

TPNE is described as follows: 
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2.3 ORTHOGONAL TENSOR NEIGHBORHOOD 

PRESERVING EMBEDDING (OTNPE) 

 

On the basic of TNPE, orthogonal conditions of 

projections matrixes are added in TNPE. The objective 

function of OTNPE is described as follows: 
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3 Supervised Orthogonal Tensor Neighborhood 

Preserving Embedding (SOTNPE) 

 

3.1 THE OBJECTIVE FUNCTION 

 

An i-dimensional image itself may be represented as a 

matrix or a second-order tensor. With tensor algebra used 

for the analysis of images, an i-dimensional image is 

regarded as a point of i-order tensor space. On the basic 

of Equation (6), we have introduced supervision 

discrimination information based on class label,  

Given samples 
1 1[ ,..., ] [ ,..., ]n kX x x    , where 

i

denotes samples of the i-th class. The objective function 

of SOTNPE is described as follows:  
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where label(xi) denotes the class label of ix  and ( )ilabel x  

denotes samples whose class label is as same as that of 

ix . 

 

3.2 ALGORITHM STEPS 

 

Input: samples   1 2

1,...,
m m

nX x x R


  . 

Output: projection matrixes 
1 2, ,..., lU U U . 
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Steps: 

1) On the basic of Equation (1), constrain condition 

are added, namely that iy  and jy  are in the same class. 
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Calculate the reconstructive matrix W using the way 

in [18]. 

2) Set 0 ( 1,..., )i

i

U I i l  . 

3)  

3.1) the number of iterations 1,2,...,t   

3.1.1) Calculate l projection matrixes in iterations 

1,2,...,m l  

3.1.1.1) Set 1 2

1 2. ...k l

i i lx U U U        ( i=1,…,n)  

3.1.1.2) Set
( ) ( )( )k k T

K i i

i

D     and 
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3.1.1.3) If kD is singular, then  

( )0.001k k mkD D I    .  

3.1.1.4) Calculate k

lu  in    
1

l l

k k

k k l kD S u D u


   

using the generalized matrix solution. 

3.1.1.5) loop of iteration p=2,…, '

km  

3.1.1.5.1) Set 
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3.1.1.5.3) Calculate k

Pu and Orthogonalized

/k k k

P P Pu u u  in 
( 1)

p

p k k

k l k pu I u   using the generalized 

matrix solution. 

3.1.1.5.4) end the loop p 

3.1.1.6) Set 1 2, ,....,k k k k

mkU u u u
    . 

3.1.1.7) End the loop k. 

3.1.2) If 1   and 1

k kU U    (   is error), then 

end the loop  . 

3.2) End the loop  . 

4) Get projection matrixes ( 1,2,..., )iU i l and 

1 2

1 2 ... l

kY X U U U    . 

 

 

4 Experiments 

 

4.1 EXPERIMENTAL DATA 

 

In the experiment, AR and YaleB face datasets are used 

as experimental data and they are described as follows: 

1) AR [18] consists of over 4000 face images of 126 

individuals. For each individual, 26 pictures were taken 

in two sessions (separated by two weeks) and each 

section contains 13 images. These images include front 

view of faces with different expressions, illuminations 

and occlusions. Figure 1 shows a group of samples in AR. 

 

FIGURE 1 A group of samples in AR 

2) YaleB [19] consists of 2414 frontal-face images of 

38 individuals. Face images were captured under various 

laboratory-controlled lighting conditions. Figure 2 shows 

a group of samples in YaleB. 

 

 
FIGURE 2 A group of samples in YaleB 

 

4.2 EXPERIMENTAL SETTINGS 

 

TPCA [14], TLPP [15], TNPE [15] and OTNPE [17] are 

selected to compare with our algorithm. Parameter 

settings of them are listed in Table 1. 

 
TABLE 1 Parameter settings of algorithm 

Algorithms Parameter settings 

TPCA no 

TLPP    

TNPE l     

OTNPE l     

SOTNPE l    

 

Besides, we randomly select L images per class for 

training and the remaining for test. Nearest Neighbor 

algorithm for classification is adopted. All experiments 

were repeated 40 times and the average of recognition 

accuracy is gotten as experimental results.  

 

4.3 EXPERIMENTAL ANALYSIS 

 

In order to improve the computational efficiency, images 

of the AR are resized to 30 × 30. L is set to 6 and 10 and 

the recognition accuracy is gotten respectively. Figures 3 

and 4 show experimental results on AR. 
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FIGURE 3 Recognition Accuracy VS. Dimension with L=6 on AR 

 
FIGURE 4 Recognition Accuracy VS. Dimension with L=12 on AR 

From above Figures 3 and the following conclusions 

are drawn: 

1) With increase in the dimension of the subspace, 

recognition accuracies of all algorithms improve rapidly. 

When the dimension exceeds a certain value, the 

recognition accuracy of TPCA, TLPP, TNPE and 

OTNPE become gradually stabile while that of SOTNPE 

decreases slowly. This illustrates that SOTNPE gets the 

best performance in less dimension. 

2) In contrast to other algorithms, advantages of 

SOTNPE decline when the number of training samples L 

is set to 12, which demonstrates that the overfitting 

problem exists in SOTNPE. 

3) Similarly, images of the YaleB are resized to 

30×30. Figures 5 and 6 show experimental results on 

YaleB. 

 
FIGURE 5 Recognition Accuracy VS. Dimension with L=10 on YaleB 

 
FIGURE 6 Recognition Accuracy VS. Dimension with L=20 on YaleB 

We can draw following conclusions from Figure 5 

and Figure 6:  

1) In contrast to TPCA, TLPP, TNPE and OTNPE, 

SOTNPE is superior obviously to them. The reason is 

that SOTNPE not only captures the local nonlinear 

structure information but also contains discriminant 

information on YaleB. 

2) Advantages of SOTNPE decline when L is set to 

20, which also demonstrates that the overfitting problem 

exists in SOTNPE. 

 

5 Conclusions 

 

An algorithm called Supervised Orthogonal Tensor 

Neighborhood Preserving Embedding (SOTNPE) for 

dimensionality reduction is proposed in the paper. The 

algorithm achieves within-class reconstruction instead of 

reconstruction based on k-nearest neighborhoods of 

samples on the basic of OTNPE. In contrast to OTNPE, 

SOTNPE not only inherits the characteristics of OTNPE 

and fuses more supervision information based on class 

label, containing power discriminant information. The 

experiments in the AR and YaleB face database show that 

SOTNPE outperforms OTNPE obviously. However, like 

other supervised dimensionality reduction algorithms, the 

problem of overfitting remains in SOTNPE, how to fuse 

global unsupervised information is the next work. 

 

Acknowledgments 

 

The work is support by NSF of Zhejiang province in 

China (LQ12F02007) and the reform project of the new 

century of Zhejiang province in China (YB2010092). 

R
ec

o
g

n
it

io
n

 A
cc

ru
ac

y
(%

)

Dimension  d×d

R
ec

o
g
n
it

io
n
 A

cc
ru

ac
y

(%
)

Dimension  d×d

R
ec

o
g

n
it

io
n

 A
cc

ru
ac

y
(%

)

Dimension  d×d

R
ec

o
g

n
it

io
n

 A
cc

ru
ac

y
(%

)

Dimension  d×d



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 101-105 Chen Jianjun 

105 
Computer and Information Technologies 

 

References 

 
[1] Roweis ST, Saul LK 2000 Nonlnear dimensionality reduction by 

locally linear embedding Science 290(5500) 2323-6 

[2] Tenenbaum J B de Silva V, Langford J C 2000 A global geometric 
framework for nonlinear dimensionality reduction Science 

290(5500) 2319-23 

[3] M Belkin P 2003 Niyogi Laplacian eigenmaps for dimensionality 
reduction and data representation Neural Computation 15(6) 1373-

96 

[4] He X F, Yan S C, Hu Y X, P Niyogi, H J Zhang 2005 Face 
recognition using Laplacianfaces IEEE Transactions on Pattern 

Analysis and Machine Intelligence 27(3) 328-40 

[5] He X F, Cai D Y, Zhang S C 2005 Neighborhood Preserving 
Embedding In Proc of the 10th IEEE International Conference on 

Computer Vision Washington IEEE Computer Society Press 1208-

13 
[6] Yong Wang, Yi Wu 2010 Complete neighborhood preserving 

embedding for face recognition Pattern Recognition 43(1) 1008-15 

[7] Zhou W, Ahrary A, Kamata S 2012 Image Description with Local 

Patterns: An Application to Face Recognition Transaction on 

Information and Systems 95(5) 1494-505 

[8] Chen Xi, Zhang Jiashu 2012 A novel maximum margin 
neighborhood preserving embedding for face recognition 2012 

Future Generation Computer Systems 28(5) 212-7 

[9] Kang-hua Hui, Chun-li Li, Zhang Lei 2012 Sparse neighbor 
representation for classification Pattern Recognition Letters 33(5) 

661-9 

[10] Gui-Fu Lu, Zhong Jin, Jian Zou 2012 Face recognition using 

discriminant sparsity neighborhood preserving embedding Pattern 
Recognition 31(7) 119-27 

[11] Yong Wang, Yi Wu 2012 A two-dimensional Neighborhood 
Preserving Projection for appearance-based face recognition 

Pattern Recognition 45(5) 1866-76 

[12] Yuan L, Mu Z C 2012 Ear recognition based on local information 
fusion Pattern Recognition Letters 33(2) 182-90 

[13] Zhang D M, Fu M S, Luo B 2011 Image Recognition with Two-

Dimensional Neighbourhood Preserving Embedding Pattern 
Recognition and Artificial Intelligence 24(6) 810-5 

[14] He X, Cai D, Niyogi P 2005 Tensor subspace analysis In 

Proceedings of the Neural Information Processing Systems, 499–
506 

[15] Dai G, Yeung D 2006 Tensor embedding methods In Proceedings 

of the National Conference on Artificial Intelligence 330-5 
[16] Wei Y T, Li H, Li L Q 2009 Tensor locality sensitive discriminant 

analysis and its complexity International Journal of  Wavelets 

Multiresolution and Information Processing 11(7) 865-80 
[17] S Liu Q Ruan 2011 Orthogonal Tensor Neighborhood Preserving 

Embedding for facial expression recognition Patter Recognition 

44(7) 1497-513 
[18]  Martinez A M, Kak A C 2001 PCA Versus LDA IEEE Transitions 

on Pattern Analysis Machine Intelligence 23(2) 228-33 

[19] Lee K, Ho J, Kriegman D 2005 Acquiring linear subspaces for face 
recognition under variable lighting IEEE Trans. IEEE Transitions 

on Pattern Analysis Machine Intelligence 27(5) 684-98 

 

Authors  

 

Jianjun Chen, born in May 1966, Zhejiang, China 
 
Current position, grades: associate professor of Shaoxing University, Shaoxing, China. 
University studies: Bachelor’s degree in physics science from Zhejiang University in 1987, the Master’s degree from Taiyuan University of 
Technology in 2004. 
Scientific interest: machine learning and image processing. 
Publications: 11. 

 

http://apps.webofknowledge.com/OneClickSearch.do?product=WOS&search_mode=OneClickSearch&colName=WOS&SID=R2kH4p9cm65I3C8Fcai&field=AU&value=Yuan,%20L
http://apps.webofknowledge.com/OneClickSearch.do?product=WOS&search_mode=OneClickSearch&colName=WOS&SID=R2kH4p9cm65I3C8Fcai&field=AU&value=Yuan,%20L

