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Abstract 

Determining optimum cluster number is a key research topic included in cluster validity, a fundamental problem unsolved in cluster 

analysis. In order to determine the optimum cluster number, this article proposes a new cluster validity function for two-dimension 

datasets theoretically based on geometric probability. The function makes use of the corresponding relationship between a two-

dimension dataset and the related two-dimension discrete point set to measure the cluster structure of the dataset according to the 

distributive feature of the point set in the characteristic space. It is designed from the perspective of intuition and thus easily 

understood. Through TM remote sensing image classification examples, compare with the supervision and unsupervised 

classification in ERDAS and the cluster analysis method based on geometric probability in two-dimensional square, which is 
proposed in literature 2. Results show that the proposed method can significantly improve the classification accuracy. 
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1 Introduction 
 

Clustering is an important method of multivariate 

statistical analysis; it is also an irreplaceable analysis tool 

in data mining and is widely applied in various research 

projects [1]. Complete cluster analysis includes: (1) 

clustering trend analysis; (2) clustering structure 

extraction; (3) clustering results evaluation. The task of 

clustering trend analysis is to determine whether a given 

data set has clustering structure. Clustering structure 

extraction is a narrow cluster analysis, is the process of 

applying some algorithm to get the clustering results. 

Clustering results evaluation is to determine the 

rationality of clustering results by some standards, 

whether the clustering results (including levels of classes, 

the number and the boundaries of classes on each level) 

are consistent with the clustering structure in the data set. 

It is also known as cluster validity. Cluster validity 

function is the basic method to measure the rationality of 

clustering results [2].  

Many clustering structure extraction algorithms have 

been implemented [3-5], the adapting capabilities of same 

algorithm for different data sets and different algorithms 

for same data sets are different, in theory how to evaluate 

the adapting capabilities of a clustering algorithm and in 

application how to choose a applicative clustering 

algorithm for a particular data set is a problem must be 

solved. For this reason cluster validity is highly valued by 

scholars, much research focus on it. Currently many 

literatures preassign a range of optimum cluster number, 

then use exhaustive method to select the optimum cluster 

number. It is only fit for the data set that has less data. 

The method is lack of feasibility in the spatial cluster, 

which involves huge numbers of the objects (such as 

remote sensing images’ automatic classification). This 

article proposes and implements a cluster validity 

function for huge data volume theoretically based on 

geometric probability [1]. 

 

2 Clustering validity classification based on geometric 

probability 

 

2.1 ANALYTIC EXPRESSION OF THE FUNCTION 

 

Assuming the minimum value and the maximum value of 

the first term’s attribute is xmin and xmax, respectively; the 

minimum value and the maximum value of the second 

term’s attribute is ymin and ymax, respectively, and let: 

max min max min[( ),( )]a Min x x y y   , (1) 

max min max min[( ),( )]b Max x x y y   . (2) 

Then S is mapped to a discrete point set (still named S) 

in a rectangular region of a*b. Based on the structural 

information indicator function and the structural 

information extraction algorithm about clustering point 

mode in square region, which is mentioned in reference 

[13], we design a function to measure the structural 

information of the point set’s geometric distribution by 

geometric probability. 

Do paired connection of n points in this discrete point 

set S and get a set of line segments: 

( ; ; ; 1,2,3,...)i i iL s r i  , where , ,i i is r   denote midpoint 

coordinate, length and angle between vertical axis of the 

ith line segment in L , respectively, and  
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2 20 ,0 , 1,2,3,...i ir a b i       . (3) 

For L , construct H Function: 

1
( , , , )

( , , , )

N
H r r

T P r r
 

 
   

 
. (4) 

Here, T  denotes the total number of line segments in 

L , and 

2  ( 1) / 2nT C n n   . (5) 

N  denotes the number of the line segments in L , which 

satisfies: 

, ,
2 2 2 2

r r
r r

 
 

      
      

   
. (6) 

Function ( , , , )P r r    means the probability of the 

line segments satisfy 

, ,
2 2 2 2

r r
r r

 
 

      
      

   
 (7) 

in random in rectangle region whose lengths of sides are 

, ( )a b a b . 

Function ( , , , )H r r    means the ratio of the 

frequency of the number of the line segments in Set L is 

in the interval 

, ,
2 2 2 2

r r
r r

 
 

      
      

   
 (8) 

and the probability of line segment is in the same interval 

in completely random. 

So we expect 

 ( , , , ) 1E H r r    . (9) 

If 

2 2
2 2,

2

a b
r r a b


    , then 

2 2
2 2

( , , , )

( , , , ) ( , )
2

P r r

a b
P a b U

 

   

 


    

. (10) 

So 

1
( , , , ) ( , )

( , )

N
H r r H

T U
   

 
     


 (11) 

and we expect 

 ( , ) 1E H    . (12) 

Because the structural information of points set S is 

stored in Set L, while the points in S gather to multi 

clusters, the line segments in L must be clustering. It 

means in completely random the value in some interval is 

greater than the value. The Figure of ( , )H    function 

will get some peak value in the corresponding interval, 

the difference between the peak value and 1 indicates the 

level of clustering, and the number of the peak value 

indicates the number of clustering directions. A clear 

corresponding relation exists between the geometric 

distribution of the points set and the feature of the data 

set, also exists between Figure of ( , )H    function and 

the structure feature of the point set, so this function is a 

cluster validity function, which can judge the cluster 

structure and the validity of clustering results in the data 

set. The difficulty in process is to derive the analytical 

expression of ( , , , )P r r    function. 

 
FIGURE 1 The measurement of line segments in the specific intervals 

and within a rectangle 

As shown in Fig.1, if the side lengths of Rectangle 

ABCD  are , ( )a b a b , ( , , , )P r r    indicates the 

probability of the line segments got from a given 

rectangle region are in the interval: 

, ,
2 2 2 2

r r
r r

 
 

      
      

   
, (13) 

2 2arccos arcsin

0 0
arccos arccos

2 2 2 2
3 3 2 2 2 2 2 2

( , ) ( , ) ( , )

1 1 1
ln ln ( )

3 3 3

a b

a b a br r

a aa b

r r

A r drd A r drd A r drd

a b a a b b
a b ab a b a b a b

b a




     




 

   
      

     
, (14) 

2 2

1 1

3 3 2 2 2 2

2 1 2 1 2 1 2 1 2 1 2 1 2 1

1 2 1 2

( sin )( cos )

1 1
( )( ) ( )(sin sin ) ( )( sin sin cos cos )

6 2

( , , , , , )

r

r

b r a r drd

ab r r r r r r b b a a

M a b r r





  

       

 

 

          



 

. (15) 
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We measure the total of the line segment by 

measuring the area of the region where the points of line 

segments are included in. For a line segment whose 

length is 2 2(0 )r r a b    and angle between Side CB  in 

positive direction is (0 )    , the probability of the 

line segment is in the Rectangle ABCD  is proportional to 

the area of region where the points of line segments are 

in(the rectangle with dashed lines in Fig. 4): 

( , ) ( cos )( sin )A r a r b r     . (16) 

Let  

1 2 1 2, ; ,
2 2 2 2

r r
r r r r

 
   

   
        , (17) 

Then 

1 2 1 2
2 1 2 1( , , , ) ( , , , )

2 2

r r
P r r P r r P

 
   

 
      , (18) 

max2

1 min

2 2arccos arcsin

0 0
arccos arccos

( , )

( , ) ( , ) 2 ( , )

r

r

a a

a b a br r

a aa b

r r

A r drd

P

A r drd A r drd A r drd








 

     






 

 

     

. (19) 

Here 

min 1 2 1 max 1 2 2( , ) , ( , )f r r g r r       . (20) 

 

2.2 NUMERATOR VALUE OF THE FUNCTION 

 

(1) <1 20 r r a   

If 1 2,r r  are in the interval  0,a , 

1 2 1 1 2 2( , ) , ( , )f r r g r r   , 

max2 2 2

1 min 1 1

2 2

1 1

( , ) ( , )

( cos )( sin )

r r

r r

r

r

A r drd A r drd

a r b r drd

 

 





   

  



  

   

 

. (21) 

Note 
 
TABLE 1 The value of numerator in P Function  

Angle the numerator value 

1 20
2


     

1 2 1 2( , , , , , ).M a b r r    




  21
2

0  
1 2 1 1 2 2( , , , , , ) ( , , , , , ).

2 2
M a b r r M a b r r

 
     




 21
2

 
1 2 2 1( , , , , , )M a b r r       

(2) < 2 2

1 2a r r a b    

Firstly calculate three integral expression, let 

2 2

1 2 1 20 ,0 ,0
2 2

a l l a b
 

          , then 

1. 

2

1

2

1

arcsin

arccos

arcsin

arccos

( , )

( cos )( sin )

b

l r

al

r

b

l r

al

r

A r drd

a r b r drd

 

    

 

 

, 
(22) 

2 2 2 2

2 2 2 22 2 2 2 2 2

2 1 2 2 1 1
2 2 2 2

2 2 1 1 1 1 1 1

2 2 3 3 2 2 2 2

2 1 2 1 2 2 1 1

1 2

1 1 1
(arcsin arccos ) (arcsin arccos ) ln ln ( )

2 2 2

1 1 1
( )( ) ( ) ( )

2 6 2

( , , , )

l l b l l ab a b a
abl abl ab a b b l l a l l a

l l l l l l b l l a

a b l l l l a l l b l l b

L a b l l

   
         

   

        



, (23) 

2. 

2 2 2 2

1 1

2 2

arccos arccos

2 2

2 22 2 2 2 2 2 2 2

2 2 1 2 2 2 1 2 2 1 1
2 2

1 1

2 3 3

2 2 1 2

1
( , ) ( sin cos ) sin

2

1 1 1 1
( )( ) ( sin cos )( ) ln ( )

2 2 2 2

1
cos ( ) ( a

6

l l

a al l

r r

A r drd dr d ab r b a r

l l a
ab a l l b a l l a b b l l a l l a

l l a

l l ab l

 

     

  



 
    

 

 
          

 

  

   

1

2 1

1 2 2

rccos arccos )

( , , , , )

a a
l

l l

C a b l l 





, (24) 

3. 

2

1 1

2

1 1

arcsin

arcsin

2 2

2 2

2 22 2 2 2 2

2 1 2 2 1 1
2 2

2 1 1 1

2 2 3 3

1 2 1 1 2 1

( , )

1
( sin cos ) sin

2

1 1
( arcsin arcsin ) ln ( )

2 2

1 1 1
( )( ) sin ( ) ( c

2 6 2

b

l r

l

b

l r

l

A r drd

dr d ab r b a r

l l bb b
ab l l ab a l l b l l b

l l l l b

ab b l l l l a





 

   

 

 
    

 

 
      

 

     

 

 

2 2

1 1 2 1

1 2 1

os sin )( )

( , , , , )

b l l

S a b l l

 



 



. (25) 
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When r  is in the interval 2 2,a a b 
  

, 

 1 2 1 2( , ), ( , )f r r g r r  equals to 

 1 2, arccos , arccos
a a

r r
  

 
 

 
. (26) 

Now, calculate the following integral expressions: 
2

1

( , )
l

a

A r drd





   . So 1 2( , , )R l   =
2

1

( , )
l

a

A r drd





   . 

The value of 1 2( , , )R l    is shown as Table 2, and 

2 2

a
arccos , arccos

a

b a b
  


. 

When < 2 2

1 2a r r a b   , the value of numerator is 

2 1 2 1 1 2( , , ) ( , , )R r R r    . 

TABLE 2 The value of 
1 2( , , )R l    

Angle Value of 
1l , 

2l   Range of l  Value of 
1 2( , , )R l    

1 20       1 1/cos  l a 

2 2/ cosl a   

1a l l   
1 2( , , , , , )M a b a l    

1 2l l l   
1 1 2 1 2( , , , , , ) ( , , , , )M a b a l C a b l l    

2l l  
1 1 2 1 2 2( , , , , , ) ( , , , , )M a b a l C a b l l    

1 20
2


         1 1/cos  l a 

2 2/sinl b   

1a l l   
1 2( , , , , , )M a b a l    

1 2l l l   
1 1 2 1 2 2( , , , , , ) ( , , , , )M a b a l C a b l l    

2l l  
1 1 2 1 2 2 2( , , , , , ) ( , , , , ) ( , , , )M a b a l C a b l l L a b l l     

1

2
2

  




 

 

 

2 1sin cos 0a b    1 2/sin  l b 

2 1/cosl a   

1a l l   
1 2( , , , , , )M a b a l    

1 2l l l   
1 1 2 1 1( , , , , , ) ( , , , , )M a b a l S a b l l    

2l l  
1 1 2 1 2 1 2( , , , , , ) ( , , , , ) ( , , , )M a b a l S a b l l L a b l l     

2 1sin cosa b   1 1/ cosl a   

2 2/sinl b   
1a l l   

1 2( , , , , , )M a b a l    

1 2l l l   
1 1 2 2( , , , , , ) ( , , , )M a b a l L a b l l    

2 1sin cos 0a b    1 1/ cosl a   

2 2/sinl b   

1a l l   
1 2( , , , , , )M a b a l    

1 2l l l   
1 1 2 1 2( , , , , , ) ( , , , , )M a b a l C a b l l    

2l l  
1 1 2 1 2 2 2( , , , , , ) ( , , , , ) ( , , , )M a b a l C a b l l L a b l l     

1 2
2


      1 2/sinl b   

2 1/sinl b   

1a l l   
1 2( , , , , , )M a b a l    

1 2l l l   
1 1 2 1 1( , , , , , ) ( , , , , )M a b a l S a b l l    

2l l  
1 1 2 1 2 1( , , , , , ) ( , , , , )M a b a l S a b l l    

Angle Value of 
1 2( , , )R l    

1 20
2


       

1 2( , , ) ( , , )
2 2

R l R l
 

     

1 2
2


      

2 1( , , )R l       

 

3) a 2 2

1 20 r r a b      
The numerator value is: 

2 2 2 2 2 2

1 1 1 1 1 1 1

2 1 2
( , ) ( , ) ( , ) ( , ) ( , , )

r ra a

r r a r

A r drd A r drd A r drd A r drd R r
   

   

                    . (27) 

 

3.2 CLUSTERING RESULTS AND COMPARATIVE 

ANALYSIS 
 

Figure 2 is a synthetic false colour remote sensing images 

based on the TM data of Band 5, 4 and 3. After the 

clustering with our proposed algorithm, there are seven 

categories, including residential areas, shadows, close 

planting is, dilute vegetation, water, Cho and dry land 

(Shown as Figure 3). 

 
FIGURE 2 Original Image 

 
FIGURE 3 Classification Results 

 
FIGURE 4 clustering results of literature 
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FIGURE 5 results of supervised classification 

 
FIGURE 6 Results of Unsupervised Classification 

According to the clustering results (Shown as Figure 

4) of literature [2] and ERDAS, we conduct supervised 

classification and unsupervised classification to the same 

image separately. We pick up 250 pixels in the 

classification results to accuracy assessment, and 

compare with the clustering results of literature [2]. Upon 

examination, specific classification results of four 

clustering methods are shown as table 1, table 2, table 3 

and table 4. The clustering methods include ERDAS 

supervised classification, ERDAS unsupervised 

classification, clustering method of literature [2] and 

clustering method of this paper. Bold figures in the table 

indicate the number of correct classification pixels for 

each class. Then calculate classification accuracy and the 

specific quantitative indicators using the figures in the 

four tables, results are shown in paper [1]. 

The paper [1] shows that the classification accuracy of 

the cluster validity method based on geometric 

probability is 85.20%, while the classification accuracy of 

the method, supervised classification and unsupervised 

classification, which are used in literature [2] are 81.60%, 

62.80% and 58.00%, so this cluster validity classification 

method based on geometry probability is superior to the 

methods in literature [2]. 

 

4 Conclusions 

 

According to the basic idea and clustering steps of 

geometric probability-based classification method of 

cluster validity, we select 1498 × 1281 pixels of Xiamen 

Jiulong River TM images in 2002 Winter, evaluate and 

compare the clustering results with the supervised 

classification and unsupervised classification results by 

ERDAS of the same image. Experimental results show 

that the classification method of cluster validity based on 

geometric probability is superior to the literature [2], and 

it is also superior to the methods of supervised 

classification and unsupervised classification. 
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