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Abstract 

In this paper we investigation the scope of capacity for different EDAs to successfully solve problems, which concern to the mutual 

effects among the variables. More specifically, we study the learning restrictions that different EDAs confront to solve problems, which 

can be expressed by some ADFs. The research is conducted in the worst situation. The sub-functions in the ADFs are the same deceptive 

functions. We think that the capacity for this kind of algorithm are primarily influenced by the probabilistic model they depend on. We 

employ three different kind of EDAs so as to investigate the effect that the complexity of the probabilistic model has on the behave of 

the algorithm. Because the population size is crucial for EDAs, we use different population sizes in the experiments. Nevertheless, the 
results indicate that, in general, enlarge population size is not useful to solve more complex problems. 
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1 Introduction 

 

Estimation of distribution algorithms (EDAs) [1-4] are a 

new kind of evolutionary algorithms (EAs) that use 

probabilistic models instead of the typical genetic 

operators used by genetic algorithms (GAs) [5, 6]. The 

features of the search space in EDAs are extracted by 

machine learning methods. In EDAs, employing a 

probabilistic model to represent the collected information 

which is used to generate new individuals later. By this 

way, probabilistic models can lead the search to hopeful 

areas of the search space. 

Mathematically, an optimization problem can be seen 

as the minimization or maximization of a given function. 

Thus, optimization problems can be formulated as, 

* arg max ( )
x

x f x , (1) 

where : Rf S   is called the objective function or fitness 

function, 
1( , , )nx x x S   is a candidate solution of the 

problem and S  is named the problem space. In most cases, 

the optimum *x  is not unique. In this paper, the problem 

space S  is an n  dimensional discrete space. 

Because the EDAs [2, 4] can capture the structure of 

the problem, EDAs are considered to be more efficient 

than GAs. In EDAs, the specific interactions among the 

variables of solutions in the problem are taken into mind. 

In evolutionary algorithms, the interactions are display 

implicitly in mind; whereas in EDAs, the interrelations are 

showed explicitly through the joint probability distribution 

associated with the individuals of variables selected from 

each generation. The probability distribution is calculated 
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according to a population of selected candidate solutions 

of previous generation. Then, offsprings are sampled from 

this probability distribution generate. Neither crossover 

nor mutation has been used in EDAs. Figure 1 displays the 

Pseudo-code of Estimation of Distribution Algorithms. 

 

 

FIGURE 1 Pseudo-code of Estimation of Distribution Algorithms 

An EDA has such basic elements [2]: encoding of 

candidate solutions, objective function, selection of 

parents, building of a structure, generation of offspring, 

selection mechanism, and algorithm parameters like 

population size, selection size, etc. 

Different EDAs [2] mainly differ in the kind of 

probabilistic models employed and the approaches used to 

learn, then sample from the obtained models. Bayesian 
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networks is one of the models that has been widely used in 

EDAs. One of the advantages of EDAs that employ these 

kinds of models is that the complexity of the learned 

structure relies on the characteristics of the selected 

individuals. Moreover, the analysis of the models learned 

during the search can provide useful information about the 

problem structure. 

How the characteristic of the search space are reflected 

in the learned probabilistic models is another related and 

important issue in EDAs. This issue has received special 

attention from the EDA community, and is essential to 

understand the mechanisms that enable EDAs to 

efficiently sample from the problem space during the 

search process. However, the question of analysing the 

relationship between the problem space and the structure 

of the learned probabilistic models becomes more and 

more difficult because of the next two main reasons: the 

search process is random in the EDAs, and the methods 

used when learning the models can only detect 

approximate, suboptimal, structures. 

To investigate the effect that the complexity of the 

probabilistic model has on the behave of the algorithm, we 

employ three different implementations. Firstly, an EDA 

which is called univariate marginal distribution algorithm 

(UMDA) [7] that is considered independent among the 

variables, secondly, an EDA which is called EDAdt [8] 

uses a dependency-tree model every generation and last, 

an EDA which is called estimation of Bayesian networks 

algorithm (EBNA) [9,10] uses Bayesian networks. 

Because the population size is crucial [11] for EDAs and 

particularly when the used probabilistic model is Bayesian 

networks, we employ varying population sizes. 

The experimental results indicate that the ability of 

EDAs to solve the testing functions is lost quickly when 

the number of sub-functions exceeds a certain value in the 

objective function. This threshold of behave indicates a 

obvious phase-transition phenomenon that clearly delimits 

the frontiers of effectiveness. The experimental results also 

indicate that the ability to learn structures is very important 

to extend the restrictions of successful EDA 

implementations. However, EBNA displays a tremendous 

decreasing of performance because the learning method 

cannot build more sophisticated models. Moreover, 

according to the experimental results, the learning of 

unrestricted Bayesian networks requires a huge 

computational cost for solving the problems. Therefore, in 

order to solve the problems, the complexity of the models 

should grow exponentially along with growth of the 

number of sub-functions.  

 

2 Probabilistic models 

 

The probabilistic model associates to the qualitative and 

quantitative structure determined by the probability 

function. Though the EDAs could employ any kind of 

probabilistic model, the widely used models are those that 

show their qualitative component by a graph. Especially, 

one kind of models that has been widely used in EDAs are 

Bayesian networks.  

Bayesian networks [12-14], which is called belief 

networks are a kind of probabilistic graphical model. This 

kind of probabilistic models is one of very popular 

paradigms that can deal with probability distributions 

efficiently in modelling uncertain information. The 

domain of expert systems is one of the most important 

sources for the development of Bayesian networks. 

Moreover, in the past few years, Bayesian networks have 

obtained considerable attention in domain of the machine 

learning. As a result of this attention, more and more 

papers and tutorials have appeared. Thus, besides expert 

systems, Bayesian networks are also applied in 

classification problems, bioinformatics and optimization. 

Bayesian networks are the product of associating 

probability and graph theory [15], similarly with any other 

probabilistic graphical model. The graphical consist of the 

model encodes a number of conditional independences 

related to the probability distribution. Let 

),,( 1 nXXX   be an n dimensional discrete random 

variable. A Bayesian network is a graphical expression of 

the factorization of the joint probability distribution for 

,X  ( )p X x , where 
1( , )nx x x  is an assignment of 

the random variable X . More specifically, a Bayesian 

network can be expressed as a pair ( , )sss   where s  is a 

directed acyclic graph that is model structure and 
s  is the 

set of parameters associated to the structure that is model 

parameters. The structure s  determines the set of 

conditional dependences among the random variables of

X . According to the structure s , the joint probability 

distribution ( )p x  can be factorized by means of marginal 

and conditional probability functions. More specifically, 

the probability distribution factorizes according to the 

graph as, 

1

( ) ( | )
n

i i

i

p x p x pa


 , (2) 

where 
ipa  denotes a value of the variables 

iPa  that is the 

parent set of 
iX  in the graph s . 

The local probability distributions in the factorization 

are those which is induced by means of the product that 

appears in Equation (2). We suppose that these local 

probability distributions depend on the parameters 

1( , , )s n   . So Equation (2) could be rewritten by 

specifying the parameters: 





n

i

iiis paxpxp
1

),|()|(   (3) 

Suppose that the variable 
iX  has 

ir  possible values, 

thus, the local probability distribution ( | , )j

i i ip x pa   is an 

unbounded discrete distribution: 

( | , )k j

i i i ijkp x pa   , (4) 
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where 1, , iq

i ipa pa  represent the 
iq  possible values of the 

parent set 
iPa . The parameter ijk  denotes the probability 

of variable 
iX  which takes in its k-th value, at the same 

time, the set of its parents’ variables takes in its j-th value. 

Therefore, the local parameters are determined by 

1 1(( ) )i ir q

i ijk k j    . 

In order to look for a Bayesian network [16, 17], which 

can make us to represent and deal with the uncertain 

knowledge of a specific field, setting both the structure and 

the parameters is very necessary. The structure and 

conditional probabilities that is necessary for describing 

the Bayesian network can be provided either externally by 

experts, by machine learning from datasets or by mixing 

both of these methods. In this paper. We mainly focus on 

the second method. Besides, when the structure has been 

automatically learned, it can provide us with perceptions 

into the interactions between the variables of the field. 

The learning step can be separated into two subtasks 

that are structural learning and parameter learning [18-20]. 

Although there are different approaches to learn the 

structure of a Bayesian network, we mainly focus on the 

so-called score plus search method. This kind of methods 

copes with the structure learning as an optimization 

problem. Thus, the steps of learning a Bayesian network 

can be expressed as follows. Given a data set D  

containing N  cases, 
1{ , , }ND x x , finding the structure 

*s  such that, 

* arg max ( , )
ns S

s g s D


 , (5) 

where ( , )g s D  is the score which measures the quality of 

any given structure s  related to the data set D , and nS  is 

the set of all possible directed acyclic graphs (DAG) which 

have n  nodes. A number of relevant and used heuristic 

techniques such as greedy search, simulated annealing, 

particle swarm optimization, genetic algorithms and ant 

colony optimization have been used in this task. 

If score can be decomposed in presence of complete 

data sets, it is the one of the desirable character. These 

scores can be decomposed in sub-scores related to every 

node 
iX  and its parents 

iPa  in the structure s . Formally, 

we can express a decomposable score as: 

1

( , ) ( , )
n

D i i

i

g s D g X Pa


 , (6) 

where the 
Dg  is the sub-score function. As a result of the 

decomposability, it is computationally more efficient 

when the local search is carried out, because when we add 

an arc into the network, it is only necessary to evaluate the 

set of nodes involved by this change. 

When we have defined a score to assess Bayesian 

networks, we have to run a search process to look for the 

Bayesian network, which can return the best score given 

the data.  

In practical applications, we must to look for an 

suitable model structure [21-25] as soon as possible. Thus, 

a simple learning method, which can find a relatively good 

structure, even though it is not best, is preferred. There are 

a number of learning methods, which can be employed for 

this task. However, a specific search algorithm which is 

called Algorithm B [19], which is typically used by most 

of Bayesian network based EDAs. 

Algorithm B is a greedy search algorithm and its 

pseudo-code is presented in Figure 2, where D  is a data 

structure which contains the information needed to deal 

with the candidate arcs which should be added into the 

network. At the beginning, Algorithm B starts from an arc-

less structure, which represents independently among the 

variables, and at each iteration, an arc is added into 

network that can increase the score greatly. The algorithm 

stops when no arc that can increase the score any more, can 

be added into the network. 

 
FIGURE 2 Pseudo-code for Algorithm B 

When we have got a Bayesian network by learning, this 

model could provide us with detailed probabilistic 

information which we are interested in. Usually, the 

information, which the researcher wants to know is the 

probability of some events on the basic of special 

observations. Generally speaking, the probabilities which 

we are interested in, are not reposted in the Bayesian 

network obviously. It is necessary to compute in order to 

obtain them,. This course is called probabilistic inference 

and it is usually an NP-complete problem. 

Emulation of Bayesian networks, which is also named 

stochastic sampling, can be regarded as an option to the 

exact inference. The Emulation of a given probabilistic 

graphical model requires to get a sample from the 

probability distribution for X  which the model encodes. 

Next, the marginal and conditional probabilities involved 

can be calculated from the sample. 

For our goals about EDAs, the intension of the 

emulation of Bayesian networks is to get a new population 

in which the probability relations among the random 

variables of the network are potential. Specifically, for the 

purpose of sampling from the Bayesian network, the 

sampling method which we employ is forward. The 

variable must be sampled after all its parent variables have 
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been obtained. This approach is named probabilistic logic 

sampling (PLS). Figure 3 presents a pseudo-code of this 

approach. 

 

 

FIGURE 3 Pseudo-code of the probabilistic logic sampling method 

 

3 Testing functions 

 

In order to study the performance of EDAs when the 

complexity of the function grows, we handle additively 

decomposable functions (ADFs). This kind of functions 

are regularly employed by researchers [26-28]. As 

everyone knows, a number of optimization problems 

investigated recent years could be modelled by ADFs. The 

model of function employed in this paper, in which new 

sub-functions are one by one added, could be seen as a 

system that grows its complexity with the time, because 

new interactions appear among the variables [29]. 

We define ADFs in a general form. Let {0,1}nS   be 

the problem space, a fitness function :f S R  is 

decomposable if it can be expressed as a sum of sub-

functions of lower dimension, 

( ) ( )
i

i i

c C

f x f c


  , (7) 

where 
1( , , ) {0,1}n

nx x x   and 
1{ , , }lC c c  is a set 

composed of distinct sub-sets 
1{ , , }i nc x x . Moreover, 

we suppose that set 
ic  and jc  are distinct and not include 

each other. This kind of functions is also featured by its 

order k, which is determined by the size of the largest 

subset in C . 

In this paper we employ detailed cases of this general 

kind of functions. Firstly, all the sub-sets in C  have three 

variables, that is to say 3k  . Thus, C  includes all the 

sets of distinct sub-sets, which are selected from all the 

( , )C n k  possible sub-sets of variables. Secondly, all the 

sub-functions if  are the same deceptive function 3decf  

which is proposed by Goldberg. Given 
1

( )
k

ii
u y y


 , 

where {0,1}ky , the function can be formulated as, 

3

0.9 ( ) 0

0.8 ( ) 1
( )

0.0 ( ) 2

1.0 ( ) 3

i

i

dec i

i

i

for u c

for u c
f c

for u c

for u c





 


 

. (8) 

From standpoint of the EDA, the advantages of the 

fitness functions that we use are evident [30-32]. First of 

all, independently of the number of sub-functions, we all 

time know the globally optimal solution, which is with all 

ones. Secondly, the deceptive method generates strong 

interactions among the variables which belong to every 

sub-function.  

About the functions 
3decf , when they are managed 

without overlapping among the set of variables, we get the 

function Deceptive3. This function was designed in the 

background of genetic algorithms with the purpose of 

analysing their restrictions. Thus, in this paper, the 

function will be a helpful reference so as to analyse the 

restrictions of behave in EDAs. At present, deceptive 

separable functions are widely employed to analyse 

evolutionary algorithms. 

For the sake of raising the complexity of the functions 

step by step, we use a simple method. First of all, we create 

a series of objective functions in which every new function 

puts one more sub-function into the previous one. This 

series of functions is determined by the ordered set 

1{ , , }lC c c . This ordered set is composed of l  

different sub-sets of variables which are randomly taken 

from all the ( , )C n k possible combinations following a 

uniform distribution. Though we could add all the ( , )C n k  

different subsets in C , it will be not essential to get 

learning restrictions. Therefore, the s-th objective function 

in the list adds s sub-functions which are the first s sub-

sets of variables in C . The s-th function can be formulated 

as, 

3

1

( )
s l

s dec i

i

f f c




 . (9) 

However, the ordered set C  has a constraint. The join 

of the first /n k  sub-sets equal to the whole set of n 

variables, constituting the function Deceptive3. Be aware 

that in the functions from 1s   to /s n k , a number of 

the variables do not appear in any sub-function. In order to 

make these functions intact, we directly use the previously 

mentioned function u to include the set of variables 

1
{ \ }

s

ii
x c


, which do not appear in the sub-function. 

This measurement is very helpful to investigate the 

univariate and bivariate EDA. Moreover, this separable 

function is helpful to indicate difficulty of a problem. 

Finally, because of the random nature of the set C , we 

have produced for the experiments 100 different random 

instances of this kind of sets and the results presented are 

the average value from them. The entire set of experiments 

include three different problem sizes ( {24,48,72}n ) and 

the maximum number of sub-functions which is 
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determined by C , is 200l  . Moreover, for every 

possible function, we conduct ten independent EDA runs. 

The number of runs per instance is limited because of the 

high computational cost. 

The intensity of interaction can be understood as a 

notion about the interdependences that appear among the 

variables of a problem. Though there are a number of 

different methods to estimate this notion, in the 

background of the present work, we suppose that the 

intensity of interaction is simply determined by the number 

of sub-functions contained in the objective function [33-

35]. 

Moreover, in order to give a more direct measure of the 

intensity of interaction, we consider the frequency that 

every variable appears in sub-functions. For instance, in 

some ADFs, each variable appears in only one sub-

function. Generally speaking, given s sub-functions with 

size k  including n  variables, we compute the expected 

number of variable appearing in sub-functions. It is 

formulated as, 

k
s s

n
 . (10) 

In order to demonstrate how the landscapes of the 

ADFs change along with the number of sub-functions 

increasing, we give a simple example in which the number 

of variables is 9 in Figures 4-7. 

These figures shows changes of function value with 

four objective functions, which differ only in the number 

of variables. The solutions are sorted by the number of 

ones so as to supplying more intuitive graphs. For instance, 

the region with the number 4 is comprised of all the 

(9,4)C  solutions, which have 4 ones. Therefore, the 

region with the number 0 and number 9 only contains one 

solution. The two solutions play an important role in the 

kind of functions we employ, and thus, the solution with 

all zeros is emphasized with a circle and the solution with 

all ones, which is optimum is emphasized with two 

concentric circles. 

 

 

FIGURE 4 
3f , 3 sub-functions, 1s  

 
FIGURE 5 

6f , 6 sub-functions, 2s   

 
FIGURE 6 

9f , 9 sub-functions, 3s  

 
FIGURE 7 

84f , 84 sub-functions, 28s  

In this part, for each function created, we compute the 

order of a possible related exact factorization. This 

computational process is a proximity to the exact 

factorization, which has minimum complexity. However, 

this process provides useful information about the 

complexity of the probabilistic models, and it is essential 

for an EDA to solve the created problems in the worst 

conditions. The orders of the used functions change as 

shown in Figure 8. This Figure presents when problem 

sizes is 3, the order change with the average number of 

sub-functions in which each variable appear. We begin 

from 1s  , in this case it is the Deceptive3 function. The 

results show an exponential growth of the number of 

parameters related to exact factorizations and thus, the 
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complexity of these models rapidly becomes too high to 

manage. Even if having enough knowledge concerning the 

function, looking for this kind of probabilistic models is 

confronted with considerable computational restrictions. 

Moreover, if these factorizations were employed in an 

EDA, the population size should also grow with the 

complexity of the factorizations so as to get a robust 

behave of EDAs [36]. 

 
FIGURE 8 changes of the order, when the average degree of 

overlapping grows 

 

4 Experimental results 

 

In this part, we present experimental results. The 

relationship between the ratio of success and the number 

of sub-functions for each kind of algorithm gives in Figure 

9, Figure 11 and Figure 13. The relationship between 

hamming distance to the best solution and the number of 

sub-functions for each kind of algorithm gives in Figure 

10, Figure 12 and Figure 14. We only show the 

experimental results for the problems with 72n   

variables. The performance of the algorithms is alike for 

the three different problem sizes ( {24,48,72}n ) that we 

have used. Nevertheless, when the number of variables 

grows, the patterns are more obvious and clearer.  

 

FIGURE 9 Ratio of success in UMDA 

Generally speaking, by means of the descriptors 

employed in Figure 9 - Figure 14, we can obviously see 

the behave that different EDA implementations fails. The 

graphs exhibit a phase-transition effect when the 

interaction in the created problems exceeds a certain 

degree. However, this effect is especially remarkable in the 

graphs of ratio of successful runs, which fall off from 1 to 

0 steeply after only adding very few sub-functions. 

Therefore, in UMDA and EDAdt, the number of sub-

functions between total success and complete failure is 

within 2 sub-functions. For the EDA based Bayesian 

networks, though this algorithm also suffers a sudden fail, 

the conversion from 1 to 0 in the ratio of successful runs is 

relatively more gradual. concerning the hamming distance, 

it exhibits a more gradual change, which supplies 

complementary information concerning the quality of the 

solutions. For instance, though in Figure 9 the ratio of 

success can be equal to 0 when the number of sub-

functions is 4, UMDA returns solutions which are near the 

optimum in hamming distance in Figure 10. 

 
FIGURE 10 hamming distance in UMDA 

From the results obtained from the experiment, we also 

achieve the understanding of the effects that the 

probabilistic models and the population size have on the 

EDAs when we solve problems with growing interaction. 

As anticipated, the probabilistic model employed in the 

EDAs has a determined influence on the scope of problems 

that it can solve. Therefore, UMDA begins to fail when the 

number of sub-functions is 2 in the objective functions, 

EDAdt can attain the equivalent level of Deceptive3 

function and EBNA collapses between the ADFs and the 

functions with 2s  . 

 
FIGURE 11 ratio of success in EDAdt 

In addition, according to experimental results, if an 

EDA to can deal with more complex structural models, the 

population size has a more effect on the performance of the 

EDA. It is decisive to achieve a robust behaviour of EDAdt 

and EBNA, while UMDA is hardly affected by this 

parameter. As presented in Figure 11 and Figure 12, the 

smallest population size ( 1000N  ) is clearly inadequate, 
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therefore these algorithms cannot achieve a ideal 

performance.  

 
FIGURE 12 hamming distance in EDAdt 

The greatest influence of the population size takes 

place in EBNA and it is reflected in the graphs shown in 

Figure 13 and Figure 14. However, even for EDA based 

Bayesian networks, this parameter exhibits a limited effect 

to overcome influence of threshold. This suggests that, 

though the population size is important to obtain a ideal 

behavior, growing this parameter is not an efficient way to 

solve the problems when the degree of interaction grows. 

In this respect, we can see in Figure 13 and Figure 14 that 

the different graphs tend to be closer as the size of the 

population grows. 

 
FIGURE 13 ratio of success in EBNA 

From the graphs of hamming distance, we can see 

another phenomenon. when the interaction in the problem 

exceeds a certain extent, all EDAs only can find solution 

with all zeros. Thus, we could conclude that, from the 

aspect of efficiency, UMDA is the best choice to deal with 

the problems which exceed this critical threshold of 

difficulty. According to this viewpoint, and considering 

the whole scope of functions that can be created from 

0s   to ( , )s C n k , EBNA exhibits better performance 

in a reduced sub-space. Be aware that Figure 9 - Figure 14 

only presents the behaviour of the EDAs at the first ranks 

of difficulty. When n equal to 72 and k equal to 3, we could 

obtain in the fitness function up to (72,3) 59640C   sub-

functions. Thus, the graphs only depict a small fraction of 

this number.  

 
FIGURE 14 hamming distance in EBNA 

From the experimental results given in Figure 9- Figure 

14, we have observed that how the behave of different 

EDAs suddenly fails when the interaction among the 

problem variables exceeds a certain extent. The reason for 

this phenomenon is that UMDA and EDAdt are deficient 

in ability to learn models. Nevertheless, for EBNA, it is 

deserving to carry out a more thorough analysis of the 

reason of its failure. In order to do this, we consider the 

complexity of the Bayesian models learned from the 

experiment. We employ the order of the factorizations 

which is determined by these probabilistic models to 

assess their complexity. In Figure 15, we present the 

average maximum orders of the models learned from each 

execution.  

Be aware that the influence of phase transition seen in 

Figure 13 and Figure 14 is associated with Figure 15. 

Therefore, EBNA starts to collapse quickly after the peaks 

in Figure 15, that is to say when the algorithm could not 

construct more complex models. Figure 15 indicates that 

the complexity of the Bayesian networks grows 

exponentially with the number of sub-functions so as to 

solve the problems. Be aware that when the learning 

method cannot construct the appropriate structures to solve 

more problems, the algorithm still spends a large number 

of computational resources on learning false models. 

It is a question that what extent the behaviour 

mentioned above depends on the learning method, which 

need an thorough analysis. We argue that, in this worst 

situation, we will likely get a resembling performance for 

other approximate learning methods. 

 
FIGURE 15 maximum orders of the models learned by EBNA 

We compare the complexity of the learned structures 

with the complexity of the exact factorizations in Figure 16 

and Figure 17. The curve shown in Figure 16 corresponds 

to the order of the exact factorizations, which were pre-

sented in Figure 8. However, in the graph, the number of 
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variables is only for 72n   and curve is exhibited in re-

lation to the number of sub-functions. We have used a cir-

cular mark so as to approximately indicate the region where 

EBNA fails. In Figure 17, we put the order of the exact fac-

torizations and the order of the Bayesian networks obtained 

by the EDA together. The dashed line indicates the graph of 

the exact factorizations. In this Figure, we can observe that, 

when the EDA can run successfully, the maximum comple-

xity of the models obtained is not less than the complexity 

of the exact factorizations. That is to say, when the EDA 

cannot learn the complexity of the models, which equals to 

the exact factorizations, it no longer solves more complex 

problems. The dashed line of the factorizations exactly sepa-

rates the problems solved by EDA from the problems unsol-

ved by EDA for every population size. Population size, 

which is insufficient may be the main reason to explain the 

bad behave in looking for the model structure.  

 
FIGURE 16 maximum orders of the models learned by EBNA 

 
FIGURE 17 maximum orders of the models learned by EBNA 

 

5 Conclusions 

 

In this paper we have investigated the restrictions of behave 

that different EDA implementations confront when the in-

teraction among the variables of the problem grows. We 

conduct the study by the employment of ADFs in which new 

sub-functions are added one by one. Therefore, the inter-

action can be measured by the number of sub-functions, 

which the objective function contains. In addition, we emp-

loy the separable deceptive function as a indication of prob-

lem difficulty so as to supply more perspicuous results. In 

the experiments, we have carried out three different type of 

EDA implementations. Because these algorithms only dis-

tinguish in the probabilistic model employed, the results 

indicate the influence that using more complex models has 

so as to solve a broader scope of problems. We have also 

employed different population sizes, which has been crucial 

so as to realize a potent performance in EDAs that base on 

Bayesian networks. Nevertheless, the results show that, ge-

nerally speaking, growing this parameter is not useful to sol-

ve more difficult problems. 

We have found that the EDAs fail with a phenomenon 

of phase transition when the number of sub-functions in the 

objective function grows in the worst situation,. The area in 

which EBNA collapses is between the separable deceptive 

functions and the objective functions with 2 /n k  sub-func-

tions. The reason for the breakdown of the algorithm is that 

the EDA cannot obtain correct models. Once the EDA can-

not to learn more complex models which is essential to solve 

more difficult problems, the algorithm fails. The complexity 

of the networks tends to grow exponentially so as to find the 

optimum needed for the algorithm. Nevertheless, exceeding 

a certain degree, the learning method cannot structure the 

suitable models to solve the problem and then, the algorithm 

collapses quickly. It implies that, when the degree of inter-

action exceeds a critical point, the learning of Bayesian net-

works may not be able to obtain the information needed to 

find the optimum from the population. Moreover, the rela-

tionship between the models learned by the EDA and the 

exact factorization indicates forceful computational restric-

tions because of the exponential increasing complexity of 

the structural essential to solve the problems.  

The restrictions of effectiveness displayed in this paper 

are straight associated to the learning procedure of the algo-

rithm. Nevertheless, these restrictions do not always have 

only one cause. We can confirm three different standpoints 

from which the learning restrictions in EDAs could be 

investigated: 

1) restrictions of the learning either because the model 

needs a priori knowledge or because they learn approximate 

models with bounded complexity. 

2) Even if we employ a desired learning method, there 

are efficiency restrictions because the complexity of models 

grows exponentially, which is disadvantage to solve the 

problems when the number of interactions grows. 

3) Restrictions for the population either because of the 

deficiency of information that it includes to solve the 

problem or because this parameter should grow exponen-

tially to supply an effective learning. 

In general, we have investigated the concept of borders 

of EDA effectiveness concerning the extent of interaction of 

the problem. The main objective of this study is not to look 

for the best algorithm or negate any method but to compre-

hend which algorithms are the suitable for which problems. 
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