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Abstract 

We give direct detailed proofs for the connection between powerdomains and logic models which can be made 
about nondetermin- istic computations. In the proceeding of proofs, we prove some algebraic properties of 
them at the same time. Meanwhile, we take up some trick for constructing the finite branching tree, which can 
also be used into the other areas. 
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1 Introduction 

Powerdomains were originally proposed to model the 
semantics of nondeterministic programming languages [1, 
2]. They can be taken as the domain analogues of powersets 
with elements which represent the sets of different courses 
a nondeterministic computation can follow. Winskel gives a 
simple connection between powerdomains and modal 
assertions that can be made about nondeterministic 
computations in [1]. He considers three kinds of 
powerdomains: the Smyth powerdomain, the Hoare 
powerdomain and the Plotkin powerdomain. Two kinds of 
modal operators are taken: ¤  for "inevitable" and  §  for 
"possible". It is shown in a precise sense how the Smyth 
powerdomain is built up from assertions about the inevitable 
behaviour of of a nondeterministic computation, the Hoare 
powerdomain is built up from assertions about the possible 
behaviour of of a nondeterministic computation, while the 
Plotkin powerdomain is built up from both kinds of 
assertions taken together. In [3], the detailed proofs are not 
given. It is also a little fuzzy to understand the sketch of 
proofs. We give here detailed direct proofs of thee results. 
On the way, we establish some algebraic properties of 
powerdomains and of nondeterministic computations. In 
particular, we spell out the construction of nondeterministic 
computations associated to the elements of the respective 
powerdomains.  

We present the preliminaries on powerdomains and 
nondeterministic computations. To know more, see [4]. 

We first give some knowledge of domain theory. Let  be 
a partial order. A  of  is a non-null subset 
S(µ D) such that . A 

 of (D; · ) is a subset A(µ D)  such that 
. An  of   is a 

non-null subset  such that  is a directed and left-
closed set. A (  for short) is a 
partial order  which has a least element  and all least 
upper bounds of directed subsets. A partial order  which 
has a least element  and all least upper bounds of directed 
subsets. A  element of a  is an element 

 such that for any directed subset  when 
 there is an  such that . We write  for 

the set of finite elements of . Intuitively, the finite elements 
are that information which a computation can realize in finite 
time. The  is  if and only if for all 

 we have . The   
is said to be countably algebraic or simply  if and 
only if  is algebraic and  is countable. 

In the sequel,  always stands for an  
. Let  be the set of non-null finite subsets of . 

There are three natural ways to preorder . We consider 
these three kinds of order: for ,  in , write  

, 

where ,  and are called , 

 and  respectively.  

There is a standard way to get an algebraic domain from 
a preorder with least element, often called 

 [5]. Let  be a preorder with a 
least element .  is the set of ideals of . It is easy to 
prove that  is an algebraic domain, with finite 
elements  for . In this way, we can 
obtain three different powerdomains by completing by 
ideals the three preorder , ,  on . We name 
them respectively the Smythpowerdomain, the Hoare 
powerdomain, and the Plotkin powerdomain. 

. 

Now, we define the notion of nondeterministic -
computation. A tree is  if it has a finite 
number of branches at each fork. 

A nondeterministic -computation has the form 
 where  is a finitely branching tree and 
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is a map to  such that 
 

A  is a sequence  where  is 
the root node and  for each  at which the 
sequence is defined. By a maximal branch of  we 
mean a branch which is either infinite, or finite of the form 

 with . 

2 The Smyth Powerdomain 

We define a modal logic  including , for all ,  
is any formula built by the following syntax; 

. 
Let  be a nondeterministic -computation. 

Define  to be the least relation included in  such 
that 

 

Definition 1. Let  be a finitely branching tree. A coupe 
of   is a finite set  of the nodes of   such that 

 

Another way to define satisfaction for -statements is as 
follows. 

Lemma 1. Let  be a finitely branching tree with the 
root . We have, 

 

Proof. Suppose that . To prove it, we are only 

allowed to use the following rules, 

 

The basic case is that from  we can get . 
Let  be . It is clear that  is a coupe, and . The 
other case is that if for all  satisfying , we have 

 then we can get . By the assumption of 
induction, for any , there exists a coupe  such that 

. Let  be the disjoin union of the coupes 
s. Then it is easy to prove that  is also a coupe of  and 

. 

On the other hand, suppose that there is a coupe  of  

such that . If , then . If , 

for any  satisfying . 

Lemma 2. Let  be a nondeterministic 

with root node . Write  for . 

Let  be the class of nondeterministic . 

Define  

We have 

(1) ; 

(2) ; 

(3) ; 

(4) ;  

(5) ; 

(6) ; 

Proof (1), (2), (5), (6) It is clear 
(3) For any , if , then . On the 

other hand, we assume that , then for every 
maximal branch  in the subtree out of t, there is a node  
which satisfies . Let  be the finite branch from . 
Define that  from which  has been cut. It is 
clear that  is a maximal branch in the subtree out of . 
So  has a node  which satisfies s, that is,  has the 
node  which satisfies s. By lemma 1, . 

(4) For any , if , then for every 
maximal branch in the subtree out of t, there is a node  
which satisfies , that is,  or . It follows 
that  or , then . So 

. On the other hand, if , then 
for every maximal branch  in the subtree out of t, there is 
a node  which satisfies , that is,  or 

. (i) If , then ; (ii)  If , 
let  be the branch from t to , then  is a maximal 
branch in the subtree out of , so  has a node  
which satisfies , hence . Then  has the node 
which satisfies . Therefore, . 

Such properties make us can get the normal forms of the 
logic model  

Lemma 3.  is  a normal form 
 for some , . 

Proof. By definition of , s is any formula built with 
the following syntax, . 

It suffices to consider the following cases; 
The basic case is that s = a. Then , that is,  

is  the normal form . Another case is 
that . Suppose that  is a normal 
form . Then  

 by the lemma 2. 
Another case is that . Suppose that  is 

 a normal form  and  is 
 a normal form . Then 

 

 by lemma 2. 
We are interested in the statements which are inevitably 

true. Define the following set of assertions with 
nondeterministic computations. 

Definition 2. Let  be a 
nondeterministic with root node t. Define 

 
Based on this assertions, we define an obvious preorder 

on nondeterministic computations 

 
Quotienting the preorder  on nondeterministic 

computations by the equivalence , we 
obtain the Smyth powerdomain by th eorem 1. Before we 
prove that, we give some algebraic properties of 
nondeterministic computations. 

Let 
 

Lemma 4. Let and  be nondeterministic 
computation. t is the root of and  is the root of , we 
have . 



COMPUTER MODELLING & NEW TECHNOLOGIES 2016 20(3) 24-31 Zhou Xiang 

26 
Mathematical and Computer Modelling 

Proof. Firstly, we assume that . Let 

. Then , 

because , then  

since . Therefore  

, and . 

On the other hand, we assume that . Let 
. By lemma 3, there is a normal form 

, then , then 
we have  since . 
Therefore, . 

Assume that  , we write  
standing for . 

Lemma 5. Assume that , 
 , and . If , then 

. 
Proof. Because that , then for every maximal 

branch  in the subtree out of t, there is a node  which 
satisfies , that is, , . It 
follows that . So there is ,  

 since , then , and  
. By lemma 1, . 

The following theorem show how the Smyth 
powerdomain is built up from assertions about the inevitable 
behavior of a process. Winskel gave the sketch of the proof 
[], but it is fuzzy to understand. Here we give a kind of direct 
proof. The ideal is very simple, but there is a new trick to 
construct a finite branching tree by an element of Smyth 
powerdomain. 

Theorem 1. Let  be the class of nondeterministic D-
computations. The Smyth powerdomain  is 
isomorphic to the quotient , and to the 
order . 

Proof. By the lemma 4, it suffices to prove that  is 

isomorphic to . Define  

 as follows; for any , 

 

. 

Firstly, we prove that . It is clear that 
, so . Assume that 

 , and  
. By the lemma 5, . Then . On the 

other hand, let ,  
, that is,  and  

. Then every maximal branch  in T has a node  which 
satisfies  and a node  which satisfies 

. So, just like lemma 1, we can construct two 
finite subtrees  and  of  where the leaves of   
satisfy  and the leaves of  satisfy 

. Let  be a set as follows; for every maximal 
branch of , if the leave  of  is less than the leave  
of , then , otherwise, . 
Because  and  are finite,  is a finite set. is 
clear. For any ,    and 

, so there exist  so that , 
, that is,  and . Hence  is a 

upper bound w.r.t  of  and . 
Secondly, if , then the fact that 

 is clear. 
Thirdly, the fact that  is one-one is clear. 
Next, we prove  is onto. 

Assume that . Since  is countable, then 
we can know that  is countable and nonempty (  ). 
So we can assume . Let ; 
let  be an upper bound  of  and ; ; let 

 be an upper bound  of  and ; . 
Hence, we get a chain  . 

Define a function  where for any 

.  

When  denote  
  

Let ,  

We construct  as follows; 
let  be the root of T. 

 is the set of nodes of T at the height n+1 
 iff  

So  is a nondeterministic  D-computation 

 has the following properties; 

(1) . 

For any , that is, for any  

, there is an  such that 

. Then = 

 =  

. So,  , that 

is, and . Hence, 

. 

(2) For any ,  
. If for any , there is an 

 such that , that is, 
. Let  be a least 

number so that .  

Let ; Let  

be a least number so that . 

Let ; 

. 

. 

. 
Let . So  is an infinite set which 

contradicts the fact that  is a finite set. 
Hence, there exists an , for any ,  
= . Then for any , there is an  so that 

. Because , then 
. 

(3) For any node  of  at the height , there is 
a node  of  at the height  such that 

. 
According to property (2), there is an  such 

that  and . 
Because , there is an  such that 

.  
Let . So  is  

node in the T at the height n+2. We have , 
that is, . 

(4) For any ,  
According to property (3), for any maximal branch  in 

the subtree out of , there is an element of  is one of the 
node of . By the lemma 1,  

Now we prove that  
For any , because  
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, then for any maximal branch in the , there is 
a node which satisfies . According to the proof 
of the lemma 1, there is a finite subtree  whose leaves 
satisfy . Assume that the height of the highest 
leave is . According to property (3), the set of leaves of  
is less than , then  

, we get . On 
the other hand, for any , by the 
construction of  such that 

 Since , then . From the 
property (4) and the lemma 4, . So we can prove 
that . 

Finally, the fact that  
is clear. 

3 Hoare Powerdomain 

To get Hoare powerdomain, we look at assertions built 
using the logic model which standard 'possibly' operator. In 
fact, Hoare powerdomain has an even simpler construction. 

Lemma 6. Let  consist of the non-null, left-
closed subsets of , then  is isomorphic to 

, the Hoare powerdomain. 

Proof. Let F be a function from  to  as 

follows.  

Firstly,  since  is non-null. For any  

, if  and , then for any , there 

is a  such that , so  by definition of 

. Therefore . For any  , then 

 and  . 

Secondly, if , then . Therefore, 

 is well-defined. 

Let  be a function from  to  as follows, 

 

Firstly, . In fact, since 

 . For any , , then 

there is an  in . So . 

then we have , hence, . Secondly, if 

, then . Therefore,  is also 

well-defined. 
Next, we prove that the follow results. 

(1) ; 

It follows that  

 

 

(2)  

It follows that  

 

Now, we define this logic model and the satisfaction 
relation. 

Let  be a nondeterminstic D-computation. 
Define  to be the least relation included in  such 
that , 

. 
Here we are interested in those possible statements. 
Definition 3. Let  be a 

nondeterministic  with root node . Define 
. 

Based on this assertions, we define an obvious preorder 
on nondeterministic computations, 

 
Quotienting the preorder  on nondeterministic 

computations by the equivalence , we 
obtain the Hoare powerdomain by theorem 2. 

Lemma 7. For all ,  is  a 

normal form , for . 

Proof. By definition of L1, s is any formula built with the 

following syntax, 
 

We proceed by induction on  
(1) The basic case is that . Then ,  that 

is,  is  the normal form . 

(2) The other case is that . Suppose that  is 

  a normal form . Then 

 . 

Let . 

Lemma 8. Let T and T’ be nondeterministic  

computations. The node  is the root of T, and the node t’ is 

the root of T’, we have 

. 

Proof. We assume that . For any  

, we have . Then . So 

. Therefore, . On the other hand, we 

assume that . For any , we 

have , then there is an  such that  by 

the lemma 7, that is, , so . 

Then we have . Therefore, , that is, 

. 
Theorem 2. Let  be the class of nondeterministic D-

computation. The Hoare powerdomain  is isomorphic 
to the quotient , and to the order 

. 
Proof. By lemma 6, and lemma 8, we just need to prove 

that  is isomorphic to . 
Define  

For any , . 

Firstly, we prove that . It is clear that , so 

. Assume that ,  and , then we 

have , that is, there is a finite branch from the root  

to  which  satisfies . So . Since 

.  also satisfies . Hence , . 

Secondly, if , then . 

Thirdly, the fact that  is one-one is clear. 
Next we prove that  is onto. 

Assume that . Since , we assume 

that  We construct T as 

follows; 
The fact that  is clear. 
Finally, the fact that 

  is clear. 

4 Plotkin Powerdomain 

From the two sections above, we can find the same way to 
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obtain the plotkin powerdomain. In fact, it is obtained by 
considering information about both the inevitable and 
possible behaviour of a computation. 

We define a logic modal  including , for all 
,  is any formula built with the following syntax; 

 

Let  be a nondeterminstic D-computation. 
Define  to be the least relation included in  such 
that 

 

 

 

 

In our proofs, the following properties are also needed. 

Lemma 9.  if and only if there is a finite branch 

from  to  with the node  satisfying . 

Proof. Suppose that . To prove it, by the 
definition of , we are only allowed to use the following 
rules. 

The basic case is that from  we can get . 
Then of course, there is a finite branch from  to  and the 
node  satisfies . The other case is that if there is a  such 
that  and we have , then we can get . 
By induction we may assume that for , there is a finite 
branch  from  to  with the node  satisfying . Let  
be a branch which  has been added to . Then  is a 
finite branch from  to  with the node  satisfying . On 
the other hand, suppose that there is a finite branch  from 
 to  with the node  satisfying . Let the height of the 

branch  be . For any node  of the branch , let  be the 
height from  to  in . When , , then from 

, we have  by rule (1). Assume when , 
, then when , we have  by the a rule 

(2). Hence, . 
Lemma 10. Let  be a nondeterministic 

D-computation with root node . Write . Let 
 be the class of nondeterministic D-computations. Define 

. 

We have 

(1) ; 

(2) ; 

(3) ; 

(4) ; 

(5) ; 

(6) ; 

(7) ; 

(8) ; 

(9) ; 

(10)  

Proof. The proofs of (1), (2), (3), (4), (8), (10) are seen 
at lemma 2. 

(5) For any , if , then there is finite 
branch from  to  with the node  satisfying . If  
satisfies , then , of course, . The case 
is similar if  satisfies . On the other hand, if 

, then  or . If , then 
there is a finite branch from  with the node  
satisfying , so . The case is similar if . 

Hence, . 
(6) For any , if , then there is a finite 

branch  from t to  with the node  satisfying . So 
there is another finite branch  from  to  with the node 

 satisfying s. Define that  as  to which  has 
been added. It is clear that  is a finite branch from t to 

 with the node  satisfying s. Then . 

For any , if , then . 

For any , if , then . Hence, 

. 

For any , if , then there is a finite 

branch from  to  with the node  satisfying . So any 

maximal branch in the subtree out of  has a node which 

satisfies , of course, there is a finite branch from  with a 

node satisfying , that is, . Hence, . 

So far, we have . 

(7) For any , if , then for any 
maximal branch  in the subtree out of  there is a node  
which satisfies . If there is a maximal branch  
such that , then there is a finite branch from  to 

 with the  satisfying . Hence, there is a finite branch 
from  to  with  satisfying , namely, , of 
course, . If for any maximal branch , 

, then , of course, . 
On the other hand, if , then  or 

. If , then any maximal branch in the subtree 
out of  has a node which satisfies , of coure satisfies 

. Hence, . If , then 
, hence, . 

(9) It is clear. 
In the logic model , the normal forms are following; 

Lemma 11. For all ,  is  equivalent a 

normal form  for 

some , , , , , . 

Proof. By definition of ,  is any formula built with 
the following syntax, . 

We proceed by induction on  

(1) The basic case is that . Then , that 

is,  is  equivalent the normal form . 

(2) Another case is that . Assume that  is 

 equivalent a normal form 

 . Then 

 

by the lemma 10. 

(3) Another case is that . Suppose that 

 is equivalent a normal form 

 and  is  

equivalent a normal form 

. Then  
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by the lemma 10. 

(4) Another case is that . Suppose that  is 

 a normal form   

. Then  

 by the lemma 10. 

The same as Smyth powerdomain, here we are only 
interested in that information . 

Definition 4. Let  be a 
nondeterministic -computation with root node t. Define 

 
Based on this assertions, we define an obvious preorder 

on nondeterministic computations, 
 

Quotienting the preorder  on nondeterministic 
computations by the equivalence , we 
obtain the Plotkin powerdomain in theorem 3. 

Let  
 

Lemma 12. Let  and  be nondeterministic -
computations. The node t is the root of T, and the node  is 
the root of . We have 

 

Proof. We assume that . For any 

 , we have , 

and (Since ), . 

Then we have  and 

. Since , we have 

 and , . 

Then  (Also since ), . 

So    . 

On the other hand, we assume that . Let 

, we have . By the lemma 11,  

, where  

. So . If 

, there is a finite subtree  where the 

leaves satisfy . Let  

, where for any , there is some 

leave of . Then  and 

. So  , 

Since ,   and 

, of course,  

. 

If , there is a finite branch from t to  with the 

node  satisfying . Let  be the height from  to . Let 

 be a subtree of  where the nodes of  are the nodes of 

 which height is less than and equal to . Assume that the 

set of leaves of  is , then it is 

easy to prove that  

, and , So 

, since  

,  

and . Specially,  

, So, . Therefore,  

. Hence . 

Lemma 13. Let , . 

. If  and , for any , then 

 and , for any . 

Proof. Because , and 

 . So for every maximal branch  in the 

subtree out of , there is a node  which satisfies 

, that is, there is a  such that . It 

follows . Because , then there is a 

 such that , that is, . 

Therefore . On the other hand, for 

any , because , there is  such that 

. Because , there is a finite branch from  to 

 where  satisfies , that is , . Hence, 

, that is, . So we have 

. 

Theorem 3. Let  be the class of nondeterministic D-

computations. The Plotkin powerdomain  is 

isomorphic to the quotient  and to the order 

. 

Proof. By lemma 12, it suffices to prove that  is 

isomorphic to  Define  

 as follows; 

 for any ,  

. 

Firstly, we prove that . 

It is clear that , so . Assume that 

, and . 

Since , from the lemma 13, we have  . 

Assume that  and 

. So from  and 

, we can construct two finite subtrees 

 and  of   where the leaves of  satisfy 

 and the leaves of  satisfy . 

From , and  ( , ), 

we have at most  finite branches where each leave 

satisfies some  or some  respectively. Let  be a set of 

 where, for every branch of ,  is the highest node of 

the leave  of , the leave  of , the leave which 

satisfies some ( if it exists), and the leave which satisfies 

some  (if it exists). Because  and  are finite, then  

is a finite set, and  is clear. For any , 

there are some  such that , , that is, 

and . Hence, . On 

the other hand, for any  , because , 

there is a finite branch from  to  where , from 

the definition of , there is a  such that

, so . Hence, 

. Similarly, we can prove that . Therefore, 
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 is an upper bound of  and  . 

Secondly, if , then  

 . 

Thirdly, the fact that  is one-one is clear. 

Next, we prove that  is onto.  

Assume that , since  is countable,  is 

countable and nonempty( ). So we can assume that 

. Let  be ; let  be an 

upper bound of  and  ; ; let  be an 

upper bound of  and  , . Hence, we 

get a -chain . 

Let ; Let ; 

Let  

The set  has the following 

properties; 

(1) . 

Proof. . We have  

since . For any , that is,  

 or . If , then there is the 

 such that ; if , since 

, there is an  such that 

. So . Hence, . 
 

Proof. We show this claim by induction. When , 

 then the fact that  is clear. Suppose that 

when , . Then when ,  

. We have  since . On the 

other hand, let , that is, or . If 

, since , , then there 

is an  such that  ; if , then of 

course, there is the  such that . So 

. Hence, . 

. 

Proof. We show this claim by induction. When , 

the fact that  is clear since . 

Let , that is,  or . If , there 

is the  such that ; if , since 

, then there is an  such that . So 

. Hence, . Suppose that when , 

. Then when ,  . We 

have  since  . Let

, that is,  or . If 

, since , then there is an 

 such that ; if 

, since , then there is an  

such that . So . Hence, . 

If , then      

since . 

Define a function , where for 

any - , . 

We construct  as follows; 

Let  be the root of ; 

 is the set of nodes of  at the height ; 

, for any ,; 

 iff  or . 

So  is a nondeterministic D-computation. 

It is easy to check that  has the following 
properties: 

(i) For any n, . 

Since , and , then . 

(ii) For any node  of  at the height , there is a 

node  of  at the height  such that 

. 

Because , that is, for any 

, . By the construction of, 

. 

(iii) For any , . 

According to the property (ii), for any maximal branch 

 in the subtree out of , there is an element of  is one 

of the node of . Then .  is clear, for any 

. Hence . 

Next we prove that . 

Let , then 

, and , , then there 

is a finite subtree  whose leaves satisfy . 

And there is at least a leave of  which satisfies , 

. Assume that the height of the highest leave of 

 is . According to property (ii), the set of leaves of  is 

less than  w.r.t. , then . From 

, we have . On the other hand, 

for any , by the construction of -

chain, there is an  such that . From the property 

(3), we have , so, by the lemma 13, 

 since . Finally, the fact 

that  is clear. 

5 Conclusions 

We give direct detailed proofs for the connection between 
powerdomains and logic models which can be made about 
nondeterministic computations. We believe there must be 
the other proofs. The cause that we chose this kind of proofs 
is that the ideals of proofs are simple but clear. In the 
proceeding of proofs, we prove some algebraic properties of 
them at the same time. Meanwhile, we take up some trick 
for constructing the finite branching tree, which can also be 
used into the other areas. 
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