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Abstract 

This paper presents a sparse blind source separation method which uses short-time discrete cosine transform (STDCT) to obtain the 
transformed domain information from a set of linear instantaneous mixtures of these sources. Unlike short-time Fourier transform 
(STFT) determining the single source point or area by using the ratio of the real and imaginary parts, we remove these points which 
are away from the mean direction of the cluster using the orthogonal distance between the point and the line. For the clustering part, 
we use, in this paper, an algorithm inspired from K-means. The final algorithm is easy to extend for any number of sources. Because 
the STDCT is a Fourier-related transform similar to the STFT, which using only real numbers, so it reduces the computer cost on 
clustering and improves the algorithm accuracy. Experimental results are provided to evaluate the performance of the proposed 
algorithm through comparing with STFT from the normalized mean-square error (NMSE) and signal-to-noise ratio (SNR).  
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1 Introduction 

Blind source separation (BSS) consists in retrieving 

unknown source signals from a set of their mixtures 

without any knowledge about the mixing system or the 

signals [1-2]. The instantaneous linear mixture blind source 

separation (BSS) problem can be described as [1-2]: 

( ) ( ),     1,2, ,t t t n y As
 , (1) 

where 1 2( ) [ ( ), ( ), , ( )]T

mt y t y t y ty  are the observed sig-

nals and 1 2( ) [ ( ), ( ), , ( )]T

nt s t s t s ts are  the unknown ori-

ginal source signals. t  is the discrete time sequence and T  

is the transpose operator. ( )ij m na A  is an unknown full 

row rank mixture matrix. The main objective of BSS is to 

estimate the mixture matrix A and the sources s . 

 Many algorithms have been developed for the linear 

instantaneous mixtures and are based on independent 

component analysis (ICA). They assume the sources to be 

random stationary statistically independent signals and the 

number of mixtures is more than or equal to the number of 

sources which called overdetermined and determined BSS. 

However, in practical situations, the number of mixed sig-

nals may be less than the number of sources, and cases like 

this are called underdetermined BSS (UBSS).  

The UBSS problem is generally more difficult than the 

determined and overdetermined BSS problem. Most con-

ventional underdetermined BSS algorithms were develo-

ped based on the sparsity assumption of the sources [3-10], 

which called sparse component analysis (SCA). For sparse 

source signals, the mixture matrix can be obtained by a 

clustering of observed samples, and then the direction of 

the modulus of the observed signals will be the same as 

those of the column vectors of the mixing matrix.  A signal 

is said to be sparse in the temporal domain when most of 

the signal amplitude are zero during the time period, and 

only a few number have significant values (active). If only 

one signal is active at a time, we call the sources are suffi-

cient sparse. However, in practice, the natural signals are 

not very sparse in the time domain like speech signals 

which are sparser in the frequency domain than in the time 

domain [4]. Hence if we transform the time domain signal 

into the transformed domain using a linear transform, the 

sparsity can be utilized to obtain the sources estimation 

from their mixtures. Recently, some algorithms have been 

proposed to achieve the sparsity in transformed domain, 

such as wavelet packet transform (WPT) [5-6] or short-

time Fourier transform (STFT) [7-9]. Although STFT does 

not introduce interference terms, it includes real and 

imaginary parts which increase the data, and WPT involves 

the choice of the decomposition level, they result in high 

computational cost. In contrast, DCT is a Fourier-related 

transform similar to discrete Fourier transform (DFT), but 

using only real numbers which reduces the computational 

efficiency [10]. As same as DFT, for obtaining the local 

time frequency information, we use short-time DCT 

(STDCT) for BSS to instead of STFT and WPT in this 

paper. 
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A UBSS is often solved by two-stage approach. Firstly, 
a mixing matrix is estimated given only the observed 
signals. In this paper, STDCT is used to obtain the sparse 
signals and then estimated the mixing matrix using an 
improved K-means cluster method. Secondly, the under-
lying sources are retrieved given the observed signals, the 
estimated mixing matrix. In the first stage, among the 
trends which emerge from these papers, the following 
things should especially be mentioned. A first set of 
methods requires that the sources be very sparse in the time 
domain or the transformed domain [3, 5]. The second set 
of methods relaxes the requirement and requires that there 
exist time-frequency regions where only a single source is 
active for each source [9-11]. The main objective in all 
these algorithms is the detection of these domains or 
regions. Then conventional algorithms are used to estimate 
mixing matrix based on clustering algorithms such as the 
K-means algorithm [11] or hierarchical clustering algo-
rithm [3], or time frequency ratio of mixtures (TIFROM) 
method [9-10]. In this paper we address the problem of 
estimation of mixing matrix from their instantaneous 
underdetermined mixtures only. Unlike STFT determining 
the single source point or area by using the ratio of the real 
and imaginary parts, we use the orthogonal distance bet-
ween the point and the line to remove the points which are 
away from the mean direction of the cluster.  

In this paper, we consider SCA problems in the under-
determined case, where the additional information com-
pensating the limited number of sensors is the sparseness 
of the sources. It should be noted that this problem is quite 
general, since the sources could be not necessarily sparse 
in time domain. It would be sufficient to find a linear trans-
formation (e.g. STDCT), in which the sources are suffi-
ciently sparse. So we begin with two assumptions: 

Assumption 1: There exist time domains (regions) or 
transformed domains (regions) where only one source 
occurs. That means the sources are not sufficient sparse, 
but exist sparse area.  

Assumption 2: The columns of mixture matrix A  are 
normalized to have unit 2l -norm, respectively. i.e. 

 
2

1

1,  1, ,
m

ij

i

a j n


  [13]. 

It is well known that knowing the mixing matrix does 
not directly result in the recovery of the sources [11]. In 
this paper, we only consider the problem of the estimation 
of the mixing matrix. Firstly, we use STDCT to get the 
sparse signals, and then estimate the mixture matrix by 
cluster analysis. At the same time, we proposed two steps 
to remove those points which away from the cluster center 
and/or have very small values. Finally, we give three 
experiments to research the performances of our algorithm 
comparing with STFT.  

This paper is organized as follows. Section 2 formu-
lates the problem that we are addressing and introduces 
STDCT. Section 3 presents an improved K-means cluste-
ring algorithm for estimating the mixing matrix. Section 4 
gives some simulation results and finally conclusions are 
drawn in Section 5. 

2 Problem formulation and STDCT 

2.1.  SCA MODEL 

For SCA, model (1) can be written as: 

11 1

1

1

( ) ( ) ( ) ( ),     1,2, ,

n

n

m mn

a a

t t s t s t t N

a a

   
   

       
   
   

x As . (2) 

For a fixed time t , if only one source is active, without 
loss of generality, suppose that ( )is t  has significant value, 
i.e., ( ) 0is t   and ( ) 0,  ,js t j i    1,2, ,j n . Eq. (2) 
then becomes  

1 1( )

( )

( )

i

i

m mi

x t a

s t

x t a

   
   

   
   
   

 . (3) 

Obviously, formula (3) means that all columns of A

are the hyperline directions of the modulus of the obser-

vation vectors. In other words, to estimate A , we only 

need to find these directions by solving adaptive clustering 

problem.  

The essence of the sparse approach is the identification 

of directions from the observation signals. And the higher 

sparsity is a requirement for good estimation of mixing 

matrix. In this case a possible approach is to look for a 

linear transform T such that the new representation of the 

data is sparser [4]. Then Eq. (2) can be rewritten as 

( ) ( )T T  X y A s AS   (4) 

where X  and S  are, respectively, the transformed coeffi-

cients of the mixtures and sources. For decreasing the 

computation cost, STDCT has been used in here. Because 

STDCT is a Fourier-related transform similar to the 

discrete Fourier transform, but using only real numbers. 

2.2.  SHORT TIME DISCRETE COSINE TRANSFORM 

STDCT expresses a function or a signal in terms of a sum 

of sinusoids with different frequencies and amplitudes. It is 

important to a large number of applications in science and 

engineering, such as compression of audio and images, to 

spectral methods for numerical solution of partial 

differential equations. We express the unitary STDCT of 

each observed signal [14]: 

1

(2 1)( 1)
( ) ( ) ( ) [ ( 1) ]cos ,

2

l
j

i i

t

t k
d k w k h t y t j l

l





  
     

 


1,2, , ,   1,2, , , 1,2, ,k l i m j M    , (5) 
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  , (6) 
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( )h t is a shifted windowing function, in this paper, we use 
Hanning window. l  is the window length. /M N l    is 
the number of the window, where     stands for rounding 
down to the nearest whole number. Let 1 2[ , , , ]M

i i i ix d d d  
and 

1 2[ , , , ]T

mx x xX .  
The STDCT steps are described follow:  
Step 1: The mixtures were processed in frames of 

length l  samples and they were multiplied by a Hanning 
window. Consecutive frames are with an overlap of l d . 

Step 2: Each frame was transformed with a DCT of 
length l , and then form the new signals X . 

Note that the STDCT is a linear transform, so when we 
use STDCT to the observed signals, the source signals 
have also been transformed to the transformed domain. 
The estimation of the mixing matrix is performed using the 
transformed coefficients X  of the observed signals instead 
of the observed signals y . 

2.3. COMPARISON WITH DIFFERENT LINEAR 
TRANSFORMATIONS 

We begin with an example of two speech signals in diffe-
rent linear transformations. The considered two sources are 
from the experiment “FourVoices_src” in [15], each source 
has 10000 samples. The mixing matrix is followed  

-0.1079 -0.8069

-0.9942 0.5907

 
  
 

Α

. 

Two observed signals are obtained by y = As . Fig. 1 
gives the scatter plot 1y  against 2y  with no transform, 
DCT and STDCT. Fig. 1(a) gives the scatter plot 1y
against 2y without transform, which presents a scatter plot 
of the observed signals showing a single big cloud. As can 
be seen, the different sources are indistinguishable. Then 
each mixture is DCT and the scatter plot of the transformed 
domain data is shown in Fig. 1(b), from which we cannot 
see noticeable line directions. So STDCT with Hanning 
window is used.  

The scatter plot of X  with 2048,  614l d   is sho-
wed in Fig. 1(c). In contrast, STDCT is obviously better 
than the scatter plot in time domain and DCT in this 
example. Almost all significant data are clustered along the 
two directions of the vectors. 
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(a) The observed signals 1y  and 2y    
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 (b) The transformed domains of DCT 
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(c) The transformed domains of STDCT 

 
FIGURE 1 Scatter plot 1y  against 2y   

which mixed by two speech signals with different transforms. 

Note that the length of the transformed domains with 

DCT is same as the observed signals, that are 10000 samp-

les, but the length of the transformed domains by STDCT 

with 2048,  614l d   is 26624 samples. And if we use 

STFT with the same window, the length of the transformed 

domains (real and imaginary part) is 53248 samples, which 

is twice than the STDCT. In order to increase the estima-

tion accuracy and improve the computation cost, we choose 

STDCT in this paper. 

3 Proposed approach 

As it is explained in the previous section, the main idea is 

to estimate the directions of the scatter plot of obser-

vations. If the sources are sufficient sparse in time domain 

or transformed domain, some clustering methods can be 

used to estimate the mixture matrix directly [4, 15]. Here, 

we research insufficient sparse case. Without lost of 

generality, we consider two-dimensional situation. And in 

the following sections, this idea can be easily generalized 

to more than two sources. 



COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12C) 346-353 Yanni Zeng, Yujie Zhang, Rui Qi 

349 
 

3.1. K-MEANS CLUSTER 

Firstly, as same as [7,15], we standardized observed sig-
nals to upper unit semicircle, each line corresponds to one 
category on the unit semicircle. It contains two steps: 
mirror and normalization. Then use K-means cluster method 
to obtain the clustering centers which corresponding to the 
columns of the estimation mixture matrix. The estimation 
of the mixture matrix is  

0.2788 -0.7005

0.8564 0.6346

 
  
 

Α

. 

Using the data on section 2.2, we obtain the clustering 
centers and show them in Fig. 2. Red line represents the 
connection to the directions of clustering centers, and green 
line represents the directions corresponding to the column 
of A. 
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FIGURE 2 The scatter plot of the observed signals (blue points),  
the clustering centers (red lines) and the columns of A (green lines). 

We use the normalized mean-square error (NMSE) (in 
dB) to evaluate the estimation quality. It is defined as: 

2

,

10 2

,

( )
NMSE 10log

ˆ( )

iji j

ij iji j

a

a a

 
 
 
 




, (7) 

where â  is ( , )i j th element of the estimated matrix A . 
If we cluster on the transformed domain directly, the 
NMSE is 15.1253dB.  

From Fig. 2 and the NMSE, there are some distinction 
between red line and green line. For reducing the estima-
tion error, an improved method is introduced in the follo-
wing subsection. 

For STFT, the absolute directions of real and imaginary 
parts of the observed signals are the same in the single 
source points. However, as shown previously, there are no 
real and imaginary parts in STDCT. We must remove the 
points which are away from the mean direction of the clus-
ter and adjust the cluster center to the true directions of the 
mixture matrix only use the data of the STDCT.  

Consider a data point ( , )i ix y , the line is 0ax by  . 
Then the orthogonal distance between the point and the 
line is  

2 2

i i

i

ax by
d

a b





   . (8) 

the orthogonal distances between the points and line

x

y

 
FIGURE 3 The orthogonal distances between the points and the line 

Fig.3 gives the distances between the points and the 
line. From this figure, the farther the point is away from 
line, the greater the distance is. So we remove the points 
which are away from the mean direction of the cluster by 
comparing with a small positive constant  . In other 
words, ith sample is removed if id  , where id  is the 
orthogonal distance between ith sample point and the 
direction of ith sample in the cluster. This result of remo-
ving some points which are away from the cluster is 
described in Fig. 4. 

-1.5 -1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5
remove the points which are away from the mean direction of the cluster

X1

X
2

 

FIGURE 4 The scatter plot of removing some points  

which are away from the cluster 

The mixing matrix estimation error can be further redu-

ced by removing some samples which have very small 

values. These samples can be discarded after removing the 

points which away from cluster center. In other words, the 

samples satisfy  

1

( ) max ( )
m

i
t

i

t c x t


 
  

 
X are removed, where c  is a small 

positive value. 
It should be noted that the values of   and c  need to 

be appropriately set. When   is too small, the samples are 
all too near to the cluster center, so it cannot adjust the 
cluster center to the true directions of the mixture matrix. 
And when   is too large, many unwanted points are reser-
ved. When c  is too small, the samples with small values 
cannot be removed clearly, When c  is too large, the num-
ber of samples which are retained is less, which is bad for 
K-means cluster. In this paper, we study the dependence of 
the performance of STDCT to its parameters   and c .  
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3.2  N-DIMENSIONAL CASE 

The approach stated above can be directly generalized to 
higher dimensions. Given a point 

1 2( , , , )T

NP p p p  
and a hyperline L in the N-dimensional space, of which 
the direction vector is 

1 2( , , , )T N

Nl l l l . The dis-
tance ( , )d P l  from P  to L  is 

2
,

( , ) ,
,

P
d P P P 

l
l

l l
 . (9) 

We use Eq.(9) to compute the distance from point to 
line in higher dimensions. Consequently, when the distance 
from ith point to L larger than a constant ( id  ), we 
remove ith point from the observed signals. 

The procedure of the improved method is as follows: 
Step 1.  Perform STDCT of the observed signals y  using 

Eq. (5), the transformed coefficients are X .  
Step 2.  Standardize the signals X  to X  in the 

transformed domain. 
Step 3.  Split signals X  to n  clusters by K-means 

clustering, i
x is the cluster center of ith class. 

Step 4.  Calculate d for each sample in ith class using 
Eq.(9), if d  , remove this sample from ith clus-
ter. After that, all the data which be leaved are X̂ . 

Step 5.  Discard the sample point, if 

 
1

ˆ ˆ( ) max ( )
m

i
t

i

t c x t


 
  

 
X . 

Step 6.  Split the retained signals to n clusters by K-means 
clustering again.  

Step 7.  Repeat step 4-6 until convergence, i.e. the cluster 
centers are no longer changed.  

The cluster centers are the estimation of the columns of 
mixture matrix. When we obtain the estimation A  of the 
mixing matrix, if m n  and A is invertible, the sources 
can be estimated by 

1s A y . Otherwise, the algorithms 
proposed in [10,12] be used for sources estimation in 
transformed domain, and then transform these estimation 
sources into time domain by inverse STDCT. 

4 Experimental results 

Simulations are performed on speech signals using the 
proposed algorithm. All of the experiments are repeated 50 
times to obtain average performance. Each column of the 
mixing matrix can be randomly generated using the normal 
distribution and then is normalized to have unit 2l -norm. 
The other experimental conditions are: STDCT size 2048, 
Hanning window as the weighting function and overlap 
length is 614. Except for the section 4.1 for the parameters 
  and c  research, 0.25   and 0.1c  .  

The runtime is the CPU time. Our simulations are 
performed in MATLAB7.1 environment using an Intel 
Core2 Quad CPU 2.66GHz processor with 3.25G of me-
mory, and under Microsoft Windows XP operating system. 

To evaluate the estimation quality, signal-to-noise ratio 
(SNR) and NMSE are used. SNR is defined as: 

10SNR 10log
ˆ

s

s s

 
    

,  (10) 

where s  and ŝ  denote the actual sources and their estima-
tion, respectively.  

4.1 PARAMETER CHOOSING 

In this simulation, 2m n  . The considered sources are 
from the experiment “FourVoices_src” in [15], each source 
has 10000 samples. We discuss the performance of the 
mixture matrix estimation and the sources retrieval fixing 
one of the parameters   and c . Fig. 5(a) and Fig. 5(b) 
illustrate the averaged NMSE and SNR when   increases 
with interval 0.05 from 0.01 to 1 and 0.1c  , respectively. 
The numerical values on the x-axis in Fig. 5(a) and Fig. 
5(b) denote the parameter  , while the numerical values 
on the y-axis represent the NMSE in Fig. 5(a) and the SNR 
Fig. 5(b), respectively. 

As shown in Fig. 5(a) and Fig. 5(b), the numerical 
value of   cannot be too small or large. When   is too 
small, the samples are all too close to the cluster center, 
which cannot adjust the cluster center to the true directions 
of the mixture matrix. And when   is too large, many 
unwanted points are reserved which will influence the 
estimation accuracy. In this experiment, there is a best 
result when 0.21  . At the same time, the NMSE is 
consistent with the SNR when   changes. The larger the 
NMSE is, the better the matrix estimation is, and then the 
better the sources recovered is. 
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(a) The average NMSE 
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(b) The average SNR 
 

FIGURE 5  The averaged NMSE and SNR  
when   increases with interval 0.05 from 0.01 to 0.1 and 0.1c  . 

Fig. 6(a) and Fig. 6(b) show the averaged NMSE and 
SNR when 1/ c  increases with interval 5 from 5 to 45 and 

0.25  , respectively. The numerical values on the x-axis 
in Fig. 6(a) and Fig. 6(b) denote the parameter 1/ c , while 
the numerical values on the y-axis represent the NMSE in 
Fig. 6(a) and the SNR Fig. 6(b), respectively. 
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FIGURE 6 The averaged NMSE and SNR  

when 1/ c  increases with interval 5 from 5 to 45 and 0.25  . 

As shown in Fig. 6(a) and Fig. 6(b), the numerical 
value of c  cannot be too small or large. When c  is too 
small, the samples with small values cannot be removed 
clearly, which will influence the estimation accuracy. 
When c  is too large, the number of samples which are 
retained is less, which is bad for K-means cluster. In this 
experiment, there is a best result when 0.1c  . Mean-
while, the NMSE is consistent with the SNR when c  chan-
ges. The larger the NMSE is, the better the matrix estima-
tion is, and then the better the sources retrieved is. 

4.2 THE COMPARATION WITH STFT 

In this experiment, we use the STFT to obtain the sparse 
signals instead of STDCT, other conditions are same with 
4.1. Because it has the real and imaginary part, we need 
joint the real and imaginary parts to cluster and obtain the 
mixing matrix estimation. This process increases the length 
of data, which increases the computation time and reduces 
the clustering accuracy in the cluster. The mixing matrix is 
followed 

-0.1079 -0.8069

-0.9942 0.5907

 
  
 

Α . 

With STDCT, the estimation of the mixing matrix A  
is obtained: 

0.0970 -0.8013ˆ
0.9915 0.5844

STDCT

 
  
 

A . 

With STFT, the estimation of the mixing matrix A  is 
obtained: 

0.1270 -0.7918ˆ
0.9917 0.6105

SFFT

 
  
 

A . 

In this experiment, because A  is invertible, we use 
1 1ˆ ˆˆ    s A y A As s  to obtain the estimation of source 

signals. Table 1 gives the distinction of STDCT and STFT 
from average NMSE, SNR and the computer time. 

TABLE 1 The distinction of STDCT and STFT from average NMSE, 
SNR and average time 

 
Average 

MSE(dB) 

Average 

SNR(dB) 

Average 

time(s) 

STDCT 40.0620 36.9546 5.816274 

STFT 33.0461 29.6219 14.988418 

From table 1, it is seen that the average NMSE and 
SNR with STDCT are better than these with STFT. 
Meanwhile, the average computer time with STDCT is less 
than STFT. The main reason is that the length of data with 
STFT is twice than the length of data with STDCT, it 
increases the runtime and decreases the accuracy of the 
cluster. 

The retrieved source signals with STDCT are showed 
in Fig. 7(b) and the restored signals with STFT are showed 
in Fig. 7(c). The numerical values on the x-axis denote the 
discrete time sequence, while the numerical values on the 
y-axis represent amplitude of signals. Fig. 7(a) gives the 
source signals. 
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(a) Source signals 
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(b) Retrieved signals by STDCT 
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(c) Retrieved signals by STFT 
 

FIGURE 7 The waves of the source signals and  
the restored signals with STDCT and STFT. 

4.3  HIGH DIMENSION  

In this experiment, 2,  3m n  . The considered sources 
are from the experiment “six_src” in [15], each source has 
65536 samples. The mixing matrix is followed by 

0.7071 0.2588 0.9659

0.7071 0.9659 0.2588
A

 
  

  
. 

With STDCT, the estimation of the mixing matrix A  
is obtained: 

0.7071   -0.9658   -0.2595ˆ
0.7070    0.2587    0.9657

STDCTA
 

  
 

. 

With STFT, the estimation of the mixing matrix A  is 
obtained: 

-0.2597   -0.9652    0.7073ˆ
 0.9656    0.2605    0.7069

SFFTA
 

  
 

. 

Fig.8 give the scatter plot 1x  vs. 2x which mixed by 
three speech signals. Fig. 8(a) presents a scatter plot of the 
observed signals. Then the scatter plot of the STDCT 
domain data are shown in Fig. 8(b). In contrast, STDCT is 
obviously better than the scatter plot in time domain in this 
example.  
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(a) The observed signals 1x and 2x  
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(b) The transformed domain of STDCT 
 

FIGURE 8  Scatter plot 
1x  vs.

2x which mixed by three speech signals. 

Almost all significant data are clustered along the three 
directions of the basis vectors. Because the data in STDCT 
have three clear directions, so we use K-means cluster 
directly, otherwise, we must adjust the cluster centers by 
using the improved method.  

Table 2 shows the average NMSE and the average run-
time for STDCT and STFT. From this table, it is seen that 
the NMSE with STDCT is better than STFT, at the same 
time, the average time with STDCT is less than STFT. 
Because in this experiment, the data with STDCT have 
clear directions, so we just repeat the step 4-6 once, then 
the runtime is less than Table 1. 

TABLE 2  The distinction by using STDCT and STFT from average 
NMSE and average time 

 Average NMSE(dB) Average Time(s) 

STDCT 67.2380 0.800644 

STFT 58.3580 1.458367 

5 Conclusions 

In this paper, we proposed an improved K-means approach 
for solving the linear instantaneous mixtures. This method 
is based on assumption that there exist time domains 
(regions) or transformed domains (regions) where only one 
source occurs at a time. Unlike STFT, the STDCT trans-
form real observed signals to real values without imaginary 
part, which decreases the computer time. Although we 
proposed an improved sparse BSS algorithm by using K-
means clustering algorithm, other clustering approaches 
can instead of K-means clustering method to obtain similar 
results. The estimation error, computation time are reduced 
as compared to using STFT. 
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