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Abstract 

Vibration characteristics analysis is important in the design of multi-span pipeline with different support conditions. In order to 

analyze the natural frequency and the vibration modal of the multi-span pipeline, a matrix transfer method is proposed in this paper. 

With the multi-span pipeline divided into single-span pipes, the transmission formulas for the deflection, angle, bending and shear 

between two adjacent spans are deduced, in combination with the Krylov function solution of the free vibration equation for the 

single-span pipe, and the constraint condition between the two adjacent spans of the multi-span pipeline. According to the boundary 

conditions on the starting and ending spans, the natural frequency equation and the vibration modal function between two adjacent 

spans of the multi-span pipeline are presented. The FORTRAN program based on the above principle is written, and the natural 

vibration frequencies and the vibration modals of two typical multi-span pipelines are investigated and compared with the results 

from ABAQUS. It is shown that the model presented in this paper is efficient in the analysis of multi-span pipeline and has the 
advantages of high computational efficiency and convenience for engineering practice application. 
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1 Introduction 

 

With widely used in petroleum engineering, chemical 

engineering and nuclear power, Multi-span flow pipeline 

is one of the most common industrial equipment’s. 

During the design of the Multi-span flow pipeline, in 

order to prevent the production of "instability" and 

"resonance" phenomenon, much attention should be paid 

to its dynamic characteristics such as natural frequency 

and vibration modal. In order to do it, various approaches 

have been used ranging from numerical methods such as 

finite element method [1, 2] to analytical models [3]. The 

former, although has high calculation accuracy, is 

inconvenience to be used. The latter with appropriate 

accuracy and relatively low computational cost is 

convenient to be used in engineering. 

For the analytical models, traditionally, three-

bending-moment model [4], which is based on the 

continuous condition of the angle and bending moment 

on the support linked to two adjacent spans, is usually 

used to establish frequency equation and solved it by 

numerical analysis method. This model shows good 

adaptability to low-order frequencies but for the 

calculation of high-order frequency, the computational 

precise will decrease due to the increase of the iteration 

number. Zhang et al and others [5-10] successively 

presented the frequency equations of multi-span pipeline 

with flexible and rigid supports. The influence of support 

to vibration modal had been also investigated by them. 

These models also appear capability in the determination 

of low-order frequencies of multi-span pipeline. 

However, the derivation processes of vibration mode 

function and frequency function in them are not available 

and high-order frequency solution with higher precise 

still remains unsatisfied. Therefore, it is clearly desirable 

to develop an effective analytical model with better 

precise for high-order vibration and more convenient for 

practical application.  

The aim of this paper is to provide an efficient 

method of vibration characteristics analysis to the design 

of multi-span pipeline with different spans and different 

supports. The continuity condition of multi-span pipeline 

is used to derive the vibration modal functions of the 

multi-span flow pipeline and by solving them with 

iteration technique, high-order natural frequency and 

vibration modal with higher precise can be obtained. 

 

2. Free vibration equation for multi-span flow pipeline 

 

2.1 SINGLE-SPAN FLOW PIPELINE 

 

Based on vibration analysis theory for single-span beam, 

vibration equation for multi-span flow pipeline can be 

derived [11-13]. Therefore, according to the d’Alembert 

principle, the differential equation of free vibration for 
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single-span beam with material homogeneous and cross 

section uniform (see figure 1) can be written as follows 

4 2

4 2

(x, t)
0

y y
EI A

x t


 
 

 
, (1)  

where EI  is bending stiffness,   is material density, A  

is the area of cross section. 

L

EI

y

x

 
FIGURE 1 Single-span continuous beam with two ends simply 

supported 

Formula (1) is a fourth-order differential equation and 

its general solution is written as follows, 

( , ) [ ( ) ( ) ( ) ( )]siny x t AS kx BT kx CU kx DV kx pt    , 

where A , B , C , D  are constants, sin pt  is the variable 

that considers the change of displacement with time and 

has no effect on the natural frequency as well as the vi-

bration mode of the multi-span flow pipeline, ( )S kx , 

( )T kx , ( )U kx  and ( )V kx  are the functions of hyperbolic 

functions and trigonometric functions, and the expansion 

of them can be written as follows: 

ch( ) cos( )
( )

2

kx kx
S kx


 , 

sh( ) sin( )
( )

2

kx kx
T kx


 , 

ch( ) cos( )
( )

2

kx kx
U kx


 , 

sh( ) sin( )
( )

2

kx kx
V kx


 , where 

k  is the function of bending stiffness, material density, 

area of cross section and natural circular frequency and: 

4 2EI
k

A



 , where   is the natural circular frequency 

( rad / s ). 

 

2.2 MULTI-SPAN FLOW PIPELINE 

 

Multi-span continuous flow pipeline is regarded as the 

structure that is composed of several single-span be-ams. 

Each of them has the same vibration mode as a sin-gle-

span beam. Therefore, for the multi-span pipeline as 

shown in Figure 2, the general solution for the free 

vibration equation of the ith span can be written as: 

 

( , ) [ ( ) ( ) ( ) ( )]sin
i i i i i

y x t AS kx BT kx CU kx DV kx pt    . (2) 

iL

i iE I

FIGURE 2 Multi-span continuous beams with fixed ends and rigid 

supports 

Based on formula (2), the following expression can be 

used as the vibration modal function of the span:  

( ) ( ) ( ) ( ) ( ) ( )
i i i i i i

x y x AS kx BT kx CU kx DV kx      . (3) 

It appears that the vibration modal function is 

composed of the displacements of each cross section at 

some time. Thus, the displacement, rotation, bending 

moment and shear force of each cross section of the span 

can be expressed as formulas (4)-(7): 

( ) ( ) ( ) ( ) ( )
i i i i i

y x AS kx BT kx CU kx DV kx    , (4) 

 ( ) ( ) ( ) ( )
( )

( )
i i i i

i

i
k AV kx B S kx C T kx DU kx

y x
x

x
  


 


 , (5) 

 2

2

2

( )
( ) ( ) ( ) ( ) ( )

ii i i i i i

i
E I

y x
M x E Ik AU kx BV kx C S kx DT kx

x


    


, (6) 

 
3

3

3

( )
( ) ( ) ( ) ( ) ( )

i

i i i i i i i

y x
Q x E I E Ik AT kx BU kx CV kx D S kx

x


    


. (7) 

The force analysis diagram for the ith span is shown as 

Figure 3, in which 
i

y , 
i

 , 
i

M  and 
i

Q  respectively 

denote displacement, rotation, bending moment and shear 

force, superscript L , R  respectively denote left end and 

right end. 

L

iy

L

i
L

iM

L

iQ
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iy
R

i

R

iM

R

iQ
 

FIGURE 3 Force analysis diagram for ith span 

At the left end ( 0x  ), formulas (4)-(7) can be 

simplified as follows: 

2

3

i L i

i L i

i L i i

i L i

y A

kB

M k E IC

Q k EID


















. (8) 

According to equation (8), the four constants of ith 

span 
i

A , 
i

B , 
i

C , 
i

D  can be determined as follows: 

i i L
A y , i L

i
B

k


 , 

2

i L

i

i

M
C

k E I
 , 

3

i L

i

i

Q
D

k E I
 . 

With the four constants substituted into formula (4)-

(7), the displacement, rotation, bending moment and 

shear force equation of the right end (
i

x L ) of the ith 

span can be given by: 
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2 3

2

2

3 2

i i i

i R i i L i L i L i L

i

i i

i R i i L i i L i L i L

i

i

iR i i i L i i i L i i L i L

i R i i i L i i i L i i L i i L

T U V
y S y M Q

k k E I k EI

T U
kV y S M Q

kE I k EI

T
M E Ik U y E IkV S M Q

k

Q E Ik T y E Ik U kV M S Q



 





   

   

   

   













. (9) 

The equation (9) can be written as matrix form 

 
4 4

iR iL

i R i L

iR iL

i R i L

y y

C
M M

Q Q

 




   
   
   
   
   
   

. (10) 

The items in the matrix  
4 4

C


 are: 
11 i

C S , 

12

i
T

C
k

 , 
13 2

i

i

U
C

k E I
 , 

14 3

i

i

V
C

k E I
 , 

21 i
C kV , 

22 i
C S , 

23

i

i

T
C

kE I
 , 

24 2

i

i

U
C

k E I
 , 

2

31
U

i i
C E Ik , 

32 i i
C E IkV , 

33 i
C S , 

34

i
T

C
k

 , 
3

41
T

i i
C E Ik , 

2

42 i i
C E Ik U , 

43 i
C kV , 

44 i
C S . 

The equation (10) also set up the force transitive 

relation between right end and left end of the span. This 

means that, as long as the internal force in the left end is 

determined, the internal force in the right end can also be 

deduced by equation (10). For example, in the first span 

shown in figure 2, since the displacement and bending 

moment of the left end with a fixed bearing are zero, the 

equation (10) can be simplified as: 

 

1 1

1 1 13 14

1 1

1 1 123 24

4 4 1 1

1 1 133 34

1 1

1 1 43 44

R L

R L L

R L L

R L

y y C C

MC C
C

M M QC C

Q Q C C

 


 

    
    

     
       

    
     

. (11) 

For the second span, considering the supporting 

condition on the left end of the pipeline, we have: 

2

2

2

2

L

L

L

L

y

M

Q




 
 
 
 
 
 

1

1

1

1 1

R

R

R

R

y

M

Q F





 
 
 
 
 
 

, where 
1

F  is the bearing shear in 

the left end of the 1th span. 

Using the above relation and formula (10), the force 

transitive relation between the right end of 2th span and 

the left end of the 1th span can be derived as follows: 

 

1

1 1132 2

23 242 113 14

142 2

22 123 24 1

1 14 42 2 13

33 342 133 34 1

142 2

2 43 44 1

1 113

43 441

14

2

2

0 0

0

0

1

R

R L

R

R

L

L

C
C Cy C C

C
QC C

C C
C CM FC C

C
Q C C

C
C C

C

Q

 


 

 
 

 

 
 
   
   

       
              

    
 
 
 

. (12) 

Using the similar derivation process as formula (12), the displacement, rotation, bending moment and shear force in 

the right end of the ith span can be obtained as: 

 

1

1 113

23 24113 14

14

123 24 1

1 14 4 13

33 3433 34 1

14

43 44 1

1 113

43 441

14

2

2

0 0

0

0

1

i

i ii i

iR i

i i

ii R Li

i ii i

iR ii

i i

i R
i

i i

i

L

L

C
C Cy C C

C
QC C

C C
C CM FC C

C
Q C C

C
C C

C

Q

 



 





 





 



 

 
 

 

 
 
   
   

      
           

    
 
 
 


 


. (13) 
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If the right end of the pipeline is supported by hinge 

support, then 0
iR iR

y M  . According to formula (13), 

we have 
13 14

33 34

0

i i

i i

C C

C C
 . If the right end is supported by 

fixed bearing, then 0
iR iR

y   , we have 

13 14

23 24

0

i i

i i

C C

C C
 . 

Based on the condition that the determinant value of 

the matrix C is zero, a test-value method can be used to 

determine the natural circular frequency of the multi-span 

continuous pipeline. In the method, different k values are 

substituted into the determinant of matrix C. if the 

determinant value corresponding to a certain k is zero, the 

natural circular frequency is obtained using the formula 

4 2EI
k

A



 . Sorting these obtained k values from small 

to large order, the natural circular frequencies from low 

order to high order can be obtained. 

If the left end of the first span is supported by hinge 

support and elastic supports are used on the other span 

ends (see Figure 4), formula (11) is changed to formula 

(14). 

 

1 1

1 1 12 14

1 1

1 1 122 24

4 4 1 1

1 1 132 34

1 1

1 1 42 44

R L

R L L

R L L

R L

y y C C

C C
C

M M QC C

Q Q C C

  


 

    
    

     
       

    
     

. (14) 

i iE I

iL

 
FIGURE 4 Multi-span pipeline with the first span supported by 

hinge and other spans elastically supported 

Since the middle bearings are supported by elastic sup

ports, therefore 
1 1 1 1R L

Q Q K y  , where 
1

K  is the stiffn

ess coefficient of the first elastic support (KN/m). Thus, i

n this case, the formula (13) can be changed to the follow

s: 

 

1 1

1 1 12 14

1 1

1 1 122 24

4 4 1 1

1 1 132 34

1 1 1 1

1 1 43 12 44 14

R L

R L L

R L L

R L i i

y y C C

MC C
C

M M QC C

Q Q C K C C K C

 


 

 

    
    

     
       

    
     

. (15) 

 

By means of the method used in deriving formula 

(13), the recursion relation of bearing internal force of 

this kind of pipeline supported by mixture supports can 

be obtained. 

1 1

12 14

1 1

122 24

1 1

132 34

1 1 1 1

43 12 44 14

i i

iR

i i

i R L

i i

iR L

i i i i

i R i i

y C C

MC C

M QC C

Q C K C C K C



 

 

 

   



 

  
  

   
     

  
   

. (16)  

The natural circular frequencies of the multi-span 

pipeline with rigid supports are the values that make the 

determinant value of matrix C zero. The determinants of 

the matrix C is depended on support condition of the 

pipeline. The determinants of matrix C for two kinds of 

supports are listed as follows: 
12 14

32 24

0

i i

i i

C C

C C
 . The Fixed 

support at the right end 
32 34

43 12 44 14

0

i i

i i i i

i i

C C

C K C C K C


 
. 

The Elastic support at the right end Test-value method is 

also used to determine the natural circular frequencies of 

the multi-span continuous pipeline. 

 

3 Modal function for multi-span continuous flow 

pipeline 

 
Since each span of the multi-span pipeline has its 

vibration modal function, therefore the modal function 

analysis on the whole pipeline structure is to determine 

the four constants of the vibration modal function of each 

span. It is noted that the multi-span pipeline is 

continuous. Thus, the four constants of the vibration 

modal function for a span can be obtained by introducing 

the boundary condition and constraint condition between 

the span and its adjacent span into the modal function. 

The modal function for the first span can be written 

as:  

1 1 1 1 1
( ) ( ) ( ) ( ) ( )y x A S kx BT kx CU kx DV kx    . (17) 

It is assumed that the left end of the first span is 

supported by fixed bearing (see figure 2). Then the 

boundary condition for the left end of the first span can 

be described by the following equations 
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1

1

1 1 1 1 1 1

0

0

( ) ( ) 0

A

B

C U kL DV kL





 







. (18) 

If the support between the ith span and (i+1)th span is 

hinge bearing, the constraint condition between the two 

spans can be expressed as follows 

1

1

0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) 0

i

i i i i i i i i i i

i i i i i i i i i i

i i i i i i i i i

A

B B S kL C T kL DU kL

C BV kL C S kL DT kL

BT kL CU kL DV kL







  

  

  








. (19) 

If the right end of the pipeline is supported by fixed 

bearing, then the boundary condition can be written as 

1 1 1 1 1 1 1 1 1

0

( ) ( ) ( )

( ) ( ) ( ) 0

( ) ( ) ( ) 0

n

n n n n n n n n n n

n n n n n n n n n

n n n n n n n n n

A

B B S kL C T kL D U kL

B S kL C T kL D U kL

B T kL C U kL D V kL

        



  

  

  








. (20) 

The modal computing can be accomplished by means 

of the recursive method. In the method, the four constants 

for the modal function of the first span can be determined 

by assuming 1
1C   and introducing it into the equation 

(18). Base on the calculation for the first span, the other 

four constants for the second span can be obtained by 

using the equation (19). The similar recursive process is 

repeated until the four constants for the modal function of 

the last span is computed by using the equation (20).  

Based on the theory presented by the above sections, 

the computer code of the method is developed using the 

FORTRAN language and the validity of the method will 

be proved in the next section by using the finite elements 

software ABAQUS. 

 

4 Example  

 

In order to verify the computer code, computations were 

carried out for multi-span flow pipelines with different 

type of supports. 

 

4.1 MULTI-SPAN CONTINUOUS OIL PIPELINE 

WITH RIGID SUPPORTS 

 

A multi-span oil pipeline with two ends fixed and middle 

part supported by rigid bearing is shown in Figure 5. The 

geometry and physical parameters of the pipeline are 

listed in Table 1.  

 

EI

2m 1.5m 2.5m 1m 1m

 
FIGURE 5 Unequal-span oil pipeline with rigid supports 

TABLE 1 Geometry and physical parameters of the unequal-span 

pipeline with rigid supports 

Elasticity 

modulus 

( GPa ) 

Pipeline 

density 

( 3
kg / m ) 

Oil 

density 

(
3

kg / m ) 

Pipe outside 

diameter 

(m) 

Pipeline wall 

thickness (m) 

200 7850 900 0.16 0.01 

 

The computer code developed in this paper is used to 

analysis the vibration modal of the pipeline. A 

comparison between the calculation result of the first five 

order modal of the pipeline and that from ABAQUS (in 

the ABAQUS 1000 B21 elements are used) is carried out. 

The frequencies are listed in Table 2 and the vibration 

modals are shown in Figure 6.  

 
TABLE 2 The first five natural frequencies of the unequal-span pipeline 
with rigid supports  

Frequency order Current method ABAQUS 
1 81.585 80.452 
2 138.937 136.93 
3 203.391 205.99 

4 263.632 263.83 

5 421.436 422.52 
6 494.519 508.73 

7 592.239 607.44 
8 666.580 656.59 

9 795.180 818.83 

10 866.966 858.19 
11 953.093 1009.5 

12 1004.330 166.8 
13 1292.535 1248.9 

14 1308.915 1261.9 

15 1408.384 1321.4 

 

It is shown in Table 2 that the first five order 

frequencies respectively from the current method and 

ABAQUS are closed and the maximum error between 

them is less than 5%. In the Figure 6, it appears that the 

vibration modals from the model presented in this paper 

are essentially identical to those from ABAQUS. 

Therefore, the current model is efficient in the vibration 

analysis on unequal-span pipeline with rigid support.  

 

4.2 MULTI-SPAN CONTINUOUS OIL PIPELINE 

WITH ELASTIC SUPPORTS 

 

In this section, the vibration modal analysis on a multi-

span oil pipeline with two ends fixed and middle part 

supported by elastic bearings is carried out. The geometry 

and physical parameters of the pipeline are the same as 

those listed in Table 1. The stiffness coefficients of all the 

four elastic bearings are 43 kN/m . 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

FIGURE 6 Vibration modals of unequal-span oil pipeline with rigid 

supports: (a) First-order modal in current model; (b) First-order modal 
in ABAQUS; (c) Second-order modal in current model; (d) Second-

order modal in ABAQUS; (e) Third-order modal in current model;  

(f) Third-order modal in ABAQUS. 

 

The computer code is used to investigate the vibration 

characteristics of the pipeline. A comparison between the 

calculation result of the first three-order modal of the 

pipeline and that from ABAQUS (in the ABAQUS 1000 

B21 elements are used) is carried out. The first fifteen 

orders frequencies are listed in Table 3 and the vibration 

modals are shown in Figure 7. 

EI

2m 1.5m 2.5m 1m 1m

FIGURE 7 Unequal-span oil pipeline with elastic supports 

It is shown in Table 3 that the first seven order 

frequencies respectively from the current method are very 

closed to those from ABAQUS and the maximum error 

between them is less than 4%. In Figure 6 the vibration 

modals from current method are also closed to those from 

ABAQUS. Compared the Table 2 with Table 3, it can be 

found that the natural frequencies of the pipeline with 

elastic supports are lower than those of the pipeline with 

rigid supports. This is consistent to the actual situation 

and easy to be understood because the stiffness of the 

later is greater than the former. Thus, it can be seen the 

method in this paper is also efficient in the vibration 

modal analysis on unequal-span pipeline with elastic 

supports. 
 

TABLE 3 The first five-order natural frequencies of the unequal-span 

pipeline with elastic supports 

Frequency order Current method ABAQUS 

1 

2 

3 

4 

5 

6 

7 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

14.821 

41.371 

80.798 

133.388 

199.214 

270.408 

300.408 

270.261 

300.841 

370.408 

457.750 

594.268 

643.151 

726.448 

870.557 

954.677 

959.739 

15.289 

40.764 

78.866 

128.70 

189.61 

260.78 

315.45 

260.78 

315.45 

341.26 

430.26 

526.89 

630.78 

739.83 

845.57 

945.87 

973.71 
 

  

(a) (b) 

  
(c) (d) 

  
(e) (f) 

FIGURE 8 Vibration modals of unequal-span oil pipeline with elastic 
supports: (a) First-order modal in current model; (b) First-order modal 

in ABAQUS;(c) Second-order modal in current model; (d) Second-

order modal in ABAQUS;(e) Third-order modal in current model;  
(f) Third-order modal in ABAQUS 
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5 Conclusions 

 
An efficient vibration modal analysis model for unequal-

span pipeline with different kinds of supports has been 

developed. The model is based on the earlier concepts of 

the matrix transfer, but has been extended to the pipeline 

with different spans and different kinds of supports. Two 

examples of unequal-span oil pipeline with respectively 

elastic supports and rigid supports are used to test the 

effectiveness of the model. The principal conclusions are 

as follows. 

(i) Compared with the ABAQUS software, the model 

not only shows good precise in the analysis on the 

low-order dynamic property, but also appears 

capability of computing high-order vibration modal. 

(ii) Commercial software based on finite element 

method may be more precise but is hard to be 

grasped by the ordinary designers. From this point, 

the model in this paper is more convenient for 

practical application than commercial software, 

since there are not many parameters needed to be 

input in the model. 

(iii) Vibration characteristics analysis on multi-span line 

is a very important step in many engineering 

problems such as “Fluidelastic instability”, 

“Vibration induced by turbulence”. The realization 

of the model in this paper provides a choice 

concerned the vibration characteristics analysis 

model for these problems. 
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