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Abstract 

In this paper, the different structure synchronization of the two complex chaotic networks with time-varying delay and non-time-

varying delay coupling is considered. Based on Lyapunov stability theory, combined with Yong inequality approach, Hybrid control 

including periodically intermittent control and adaptive control is designed such that the two complex chaotic networks achieves the 

exponential synchronization. Different numerical simulations are given to illustrate the effectiveness of the proposed method. 

Moreover through comparing the numerical simulations with the different functions of time delay, we can get how the time delay 
function impacts the complex chaotic networks synchronization in this model. 
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1 Introduction 

 

In recent years, complex chaos networks have been a 

most important hot research area in the nonlinear science 

[1-4]. Based on the potential application and development 

foreground in physics, biology, communication, traffic, 

WWW and so on, the controller and synchronization have 

been attracted increasing attention [5, 6]. 

After many years of research, people have put 

forward a variety of effective chaotic synchronization 

control methods such as feedback control [7], adaptive 

control [8], impulse control [9] and intermittent control 

[10], etc. Synchronization has been applied to practical 

application, especially used in secure communication. In 

actually, the structure of drive system and response 

system is likely to be different. Therefore there is more 

practical significance for the research of synchronization 

of complex networks with non-identical structure. 

As an important direction, many works have been 

done to consider the synchronization of complex 

networks. The synchronization of chaotic dynamic 

networks with unknown and mismatched parameters has 

been considered in [11]. In [12], Zheng et al, discussed 

adaptive projective synchronization in complex networks 

with time-varying coupling delay. In [13], Cai et al, 

studied the synchronization-based approach for 

parameters identification in delayed chaotic networks. 

Many novel researches were proposed in [14], which 

considered the synchronization of chaotic systems with 

time-varying delays via intermittent control. In [15], Du 

et al, studied function projective in complex dynamical 

networks with time delay via hybrid feedback control. 

The above synchronization methods are based on 

the chaotic networks with identical structure. Sun et al, 

proposed non-identical structure chaotic networks in 

[16]. Based on the research of [16], Cai et al, studied 

linear generalized synchronization between two 

complex networks in [17]. 

In light of above finding, we propose a hybrid 

control, consisting of an adaptive control and 

intermittent control, to achieve the exponential 

synchronization of complex networks with time delay 

and non-time delay. And we explore the new condition 

of time delay ( )t . Based on the Lyapunov stability 

theorem and Yong inequality, the synchronization of 

chaos networks has been achieved. The numerical 

simulations have showed the accuracy and the 

effectiveness of the method. 

 

2 Description 

 

In this paper, complex networks with time delay and 

non-time-delay consisting N linearly and diffusively 

coupled identical nodes are considered as the drive 

system, described as the following: 

     1 2

1 1

( )

( ) ( ), 0 1,

( (

2,..

)),

,

0
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N N

i i ij j ij j

j j

x t f x t c x t d x t t

t t N
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x t i
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 

 

    
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 

, (1) 

where 1 2( ) ( ( ), ( ),..., ( )) n

i i i inx t x t x t x t R   is the state 

vector of the ith node, : n nf R R R   is a smooth 

vector-valued function, the time delay ( )t  is a 

constant or a bounded function, for simplicity, we 
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assume the inner connecting matrix 
1

  and 
2

  are 

diagonal matrix, where 
1

,   
2

,   C   ( ) ,
ij n n

c


 

( )
n n

ij n n
D d R




   is the weight matrix, if there is a 

connection from node i to node j (i≠j), then 0ijc   and 

0ijd  , otherwise, 0ijc   and 0ijd  .  

In this following, we introduce a general response 

networks consisting of N nodes with non-time-varying 

and time-varying delay, regarding the Equation (1) as 

the drive system, described as follows: 

1

1

2

1

( ) ( ) ( , ( )) ( )

( ( ))

N

i i i i ij j

j

N

ij j i i

j

y t By t g t y t c T y t

d T y t t u





  

 









, (2) 

where 
1 2

( ) ( ( ), ( ), ..., ( ))
n

i i i in
y t y t y t y t R


   is the state 

vector of the ith node, B is an n×n constant matrix, 

( ) :
n n

i
g R R   is a nonlinear vector-valued function, 

which is distinct for differentiable cluster, representing 

the activity of an individual subsystem. 
i

u  is a 

controller. 

Remark 1. The coupling configuration matrix C and D 

is not restricted to be symmetric or irreducible.  

Now we introduce some definitions, assumptions, 

lemmas and theorem that will be required in this paper.  

Definition 1: For the drive Equation (1) and response 

Equation (2), the following controller is called hybrid 

controller including adaptive control and intermittent 

control: 

1 2( ) ( ) ( )i i iu t u t u t  , (3) 

where 

  1
( ) ( ) ( ( )),

i ii i
u t Ay t Bgf yx t t     

2
( )

i
u t  ( )( ( ) ( ))

i i i
h t xy t t  . 

( )
0

( )

( 1)
i

ik nT t n T
h

n T n T
t

t





   


   

 ， ）（

，
, 

i=1,2,...,N, in which 0
i

k   is a constant. 

Defining the synchronization error as ( )e t   

( ) ( )y t x t , if the drive-response system satisfies: 

lim ( ) lim ( ) ( ) 0
t t

e t y t x t
 

   , then the drive Equation (1) 

and response Equation (2) can achieve synchronization. 

We can derive the error dynamical networks: 
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1
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1

1
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( ) ( ) ( ( ( ) ( ( ))) i

N

j j

N

ij j

j

i i i i
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e t Ae t B g y t g c e t
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x t
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  



 




,

( ) ( 1)n T t n T    . 

Assumption 1. For any different 1 2, nx x R , suppose 

there exists a constant L>0 such that 
1 2( ) ( )g x g x  

1 2L x x  , i=1, 2. The norm   of a variable is 

defined as 
1/2( )x x x . 

Lemma 1 [18]. For any   T

1 2( ( ), ( ),..., ( )) ,nx t x t x t x t  

  T

1 2( ( ), ( ),..., ( )) R ,n

ny t y t y t y t   there exists a 

positive constants 0   so that the following 

inequality is established: 
1

2 T T Tx y x x y y


  . 

Lemma 2 [14]. Let 0 ( )t   , y(t) is a continuous 

and non-negative function. If [ , ],t     and the 

following conditions are satisfied: 

1 2

3 2

( ) ( ) ( ( )) ( )

( ) ( ), 0

( ) ( ) ( ( )) ( ) ( 1)

( ) ( ), 0i

y t y t y t t nT t n T

x t t t

y t y t y t t n T t n T

y t t t

   

 

   



      


   


       
     

, 

where 
1 2 3, ,    is constant, n=1,2,…,N, if the condition 

1 2 0,    
1 3     and     (1 ) 0,    so we 

can get 
0

( ) sup ( )exp( )
s

y t y s t



  

  , 0t  , in which 0   

is the only positive solution of function 

1 2 exp( ) 0.       

 

3 Main results 

 

In this section, 
min  is defined as the minimum 

eigenvalue of the matrix 1 1 ) / 2(    . We assume 

min 0   and 
1   . ˆ ˆ ˆ( ) / 2sC C C  , where Ĉ  is 

obtained through that 
min /( ) iic   substitutes for the 

diagonal element 
iic  of matrix C. Let 

2P D  , 

where   stand for the Kronecker product. Now we 

consider how to select the appropriate ( )ih t  

(i=1,2,…,N),   and T so that the drive Equation (1) 

and the response Equation (2) can achieve exponential 

synchronization. 

Theorem 1. For drive Equation (1) and response 

Equation (2), if Assumption 1 is established, by the 

Definition 1, there exists a positive constant 1 2 3, ,a a a  
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and 
ik  (i=1,2,…,N) such that the following conditions 

holds: 

(i) 
m 1ax

1ˆ ( ( ) 0
2

)s

nC PA LB P k Ia     , 

(ii) 
3 1 max

1ˆ
2

)(( ) 0s

nA a P IB C a PL        , 

(iii) 
2 1 0L a  , 

(iv) 
22 (1 ) 0w a     , 

where 0   is the only positive solution of function 

212 2 exp{ } 0La     , then the trivial solution of 

error Equation (6) is globally asymptotically stable, 

which implies that drive Equation (1) and the response 

Equation (2) can achieve globally exponential 

synchronization. 

Proof. Consider the following Lyapunov function: 

1

1
( ) ( ) ( )

2

N

i i

i

V t e t e t



  . 

According the Definition 1, Lemma 1 and the 

conditions (i)-(iii), the derivative of ( )V t  about the 

trajectories of error system is given as the following: 

when ( )nT t n T   , n=0,1,2,…, we have  
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N
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(
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  
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 
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 



   
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
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3

m x

1

a

) ( ) ( )

1
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2

2( ) (

1
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)

2

( ( ))
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a e t e t

a a PP I e t t e t t

a a V t

e t
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  





 

 

    

 




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From the above equation, we have: 

1

3 1

2 ( ) ( ( )), ( )

2

( )

( ) ( ) ( ( )), ( ) ( 1)( )

V t

V t a a V t

aV t V t t nT t n T

V t t n T t n T

 

 

     

 

 


   
. 

From the lemma 2, one has: 

0

( ) sup ( )exp( )
s

V t V s wt
  

  , 0.t   

According to the Lyapunov stability theorem and 

the definition of exponential synchronization, the drive 

Equation (1) and response Equation (2) can achieve 

exponential synchronization. The proof is completed. 

Next, we will discuss how to select appropriate 

parameters, and use simple and easy date to achieve 

synchronization: from Theorem 1. We know: 

0 m maxax max
ˆ2 ( ( ) ( )

1
)(

2

s

nA LBm C PP I      ,

2

1

2
a  ,

3 0 1 0a m a   . 

Then the condition (ii) in Theorem 1 is established. 

Corollary 1. If there exists a positive 
1 2a a  such that 

(i) 
0 10 m a k   , 

(ii) 
0 12( )(1 ) 0m a      , 

where 0   is the only positive solution of function 

1 22 2 exp{ } 0,aa      then the drive Equation (1) 

and response Equation (2) can achieve exponential 

synchronization. 

Remark 2. There are many papers about complex 

networks based on intermittent control. The time delay 

and intermittent control period have strict restrict 

conditions, for example, 0.5  [20], 0 ( ) 1t   [17], 

where the time delay ( )t  must be differentiable and 

bounded. In this paper, the time delay only needs 

bounded. 

Remark 3. Adaptive synchronization is a continuous 

control method. Intermittent synchronization is a 
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discrete control method. In this paper, we put the two 

methods together. The model we consider is a general 

chaos networks. And the use of intermittent controller 

is a pretty effective way to achieve system 

synchronization.  

In Corollary 1, there is the only parameter 
1a . If the 

parameter 
1a  is given as 

*

2( )a  , we plug 
*

1a   into 

the function 
1 22 exp{ } 0a a    . So we can get 

*( )   , and the following conclusion. 

Corollary 2. If the parameter 
1a  is given as 

*

2( )a  , then the condition of the two systems achieve 

exponential synchronization is obtained in the 

following: 

(i) 
0 10 m a k   , 

(ii) 
*

*

0

( )
1 1

m

 



  


. 

From the corollary, we can obtain k, control rate  . 

Based on the above discussion, appropriate controller 

can be get such that the drive system and response 

system can achieve synchronization. 

 

4 Numerical simulations 

 

In this section, we consider the Lü system: 

2 1

2 1 2

3 1 2

( )

( )

a z z

x f z cz z z

bz z z

 
 

   
   

, (5) 

where 36, 3, 20.a b c    

Rossler  system: 

2 3

1 2

3 1

( )

( )

v v

v Av Bg v v wv

v v 

  
 

    
   

, (6) 

where 0.2, 0.2, 5.7.w      

1 2

0 1 1 0 0 0 0

1 0.2 0 , 0 0 0 , ( ) 0

0 0 5.7 0 0 1 0.2

A B g v

v v

      
     

       
           

 

in which A 5.7897,   1B   . 

The five nodes are considered in drive system: 

    
5 5

1 2

1 1

( ) ( ( ))i i ij j ij j

j j

x t f x t c x t d x t t
 

       , 

Response system is described as: 

5

1

1

5

2

1

( ) ( ) ( ( )) ( )

( ( )) ( )

iji i i

j

j

i

j

ij

j

y t Ay t Bg y t y

d t u t

t

ty

c







 

  

  



, i=1,...,5; 

where the   if x t  as the Equation (5) shows, 

( ( )),ig y t  A and B as the Equation (6) shows. 

( )ij n nC c   and ( ) n n

ij n nD d R 

   are the weight 

matrix. 

5 0 0 3 2

1 4 0 0 3

,0 0 7 4 3

0 0 0 3 3

0 0 1 1 2

C

 
 


 
  
 

 
  

 

4 3 0 1 0

2 3 1 0 0

0 0 7 4 3

0 0 1 1 0

0 0 0 2 2

D

 
 


 
  
 

 
  

. 

In numerical simulation, the initial values of drive-

response system are chosen as (0)ix   

(0.3 0.1 ,0.3 0.1 ,0.3 0.1 )i i i    , (0) (2.0 0.7 ,iy i   

2.0 0.7 ,2.0 0.7 )i i   . Choose L=1, 
1 =

2 = 

diag(1,1,1) , T=1, 
min 1   , ( )

1

t

t

e
t

e
 


, 

0 ( ) 1t  . Based on the Corollary 2, we can get 

max
ˆ( ) 1.35sC  , 

max

1
(
2

) 1.3053PP   , so 
0m   

36.6037 .  

From the Figure 1, we can obtain 
* 20   and 

0.97  , which satisfy the relation of Corollary 2, 

such that 
0 1=56.6037ak m  . Thus we choose 57k  . 

The simulation of Figure 2 shows the drive Equation (1) 

and response Equation (2) can achieve synchronization 

in a few second. A piecewise function given in the 

Figure 3, which means that the time delay is not 

differentiable, shows the correctness of the discussion 

in remark 2. 

 

 
FIGURE 1 The relationship of parameter γ*-θ 
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FIGURE 2 The synchronization error when ( )t  is linear function 

 
FIGURE 3 The synchronization error where ( ) 0.2 0.6t t t      

 

5 Conclusions 

 

In this paper, based on the Lyapunov stability theorem, 

a hybrid controller is proposed, which concludes 

adaptive control and intermittent control, to achieve 

synchronization of time-varying and non-time-varying 

coupling complex networks. The time delay ( )t  only 

needs bound. The numerical simulations discuss two 

state of the time delay, which is continuous and 

discrete. And they also indicate the synchronization 

time is related to the maximum of the time delay ( )t . 

The examples have shown the accuracy and the 

effectiveness of the proposed method. 
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