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Abstract 

The coordination of production scheduling and transportation has recently received a lot of attention in logistics and supply chain 

management. We study a coordinated scheduling problem, in which each job is transported to a single serial batching machine for 

further processing, each batch to be processed occurs a processing cost, and the objective is minimizing the sum of the makespan and 

the total processing cost. Under the condition of the jobs' processing times are equal, if the job assignment to the vehicles is 

predetermined, we provide a polynomial time dynamic programming algorithm, for the general problem, we prove it is NP-hard. 

When the returning time of vehicle is zero, we present the approximation algorithm and prove that the worst case ratio of the 

algorithm is not greater than 
1

2
m

 , and the bound is tight.  
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1 Introduction 

 
The classical scheduling problems usually assume that 

there is an infinite number of facilities for processing 

jobs, and the transportation between the warehouse and 

the facility can be done instantaneously. As a result, the 

job delivery and the machine scheduling are separately 

considered without effective coordination between the 

two. Coordination between job delivery and machine 

scheduling becomes more practical.  

The coordination of production scheduling and 

transportation has recently received a lot of attention in 

logistics and supply chain management. Semi-finished 

jobs are transported from a holding area to a 

manufacturing facility for further processing by 

transporters in many manufacturing systems. Another 

motivation arises in many industries where the 

coordination of production and transportation can help to 

save energy and reduce fuel consumption. This is 

particularly true in the iron and steel industry. 

In this paper, motivated by applications in the iron 

and steel industry, we study a coordinated scheduling 

problem of transportation and production. The jobs 

located at a holding area need to be transported by m  

vehicles to a serial batching machine for further 

processing. Each vehicle can transported one job at a 

time, and the serial batching machine can process several 

jobs at a time. Each batch of jobs to be processed on the 

serial batching machine occurs a processing cost; assume 

that batch processing cost is proportional to the batch 

number. The problem is to find a joint schedule of 

transportation and production such that the objective is to 

minimize the sum of makespan and total processing cost. 

In the last decade, the coordination of transportation 

and scheduling has become one of the most important 

topics in production and operations management research. 

Chungyee L, Zhilong C [1] considers two types of 

transportation. The first type is intermediate 

transportation in a flow shop where jobs are transported 

from one machine to another for further processing. The 

second type is the transportation necessary to deliver 

finished jobs to the customer. 

The batching machine scheduling is an important 

research topic. Recent reviews of batch scheduling 

research are provided by Potts C N and Kovalyov M Y [2] 

and Brucker P et al. [3]. The scheduling problems on the 

batching machine can be divided into two categories of 

parallel batch and serial batch according to batch 

processing pattern. In parallel batching scheduling 

problems, many jobs can be processed on the machines at 

any time; the processing time of batch is equal to the 

maximum of all jobs' processing times of this batch. 

Yuzhong Z, et al. [4] consider single parallel machine 

scheduling problem which the jobs have the sizes and 

only two different arrival time, present the approximation 

algorithm that the worst case ratio is not greater than 
33

14
 

when the processing times and the sizes are agreeable. 

In serial batching scheduling problems, only one job 

can be processed on the machines at any time, and the 
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jobs are processed one by one simultaneously, the 

processing time of batch is equal to the setup time plus 

the total processing times of the jobs in this batch. 

Coffman E G et al. [5] study minimizing the total 

completion times scheduling problem on single serial 

batch machine. Liji S et al. [6] consider the serial batch 

scheduling problem embedded in a job shop environment 

to minimize makespan, propose a tabu search algorithm 

which consists of various neighbourhood functions, 

multiple tabu lists and a sophisticated diversification 

structure. Glass C A et al. [7] study a problem of 

scheduling and batching on two machines in a flow-shop 

and open-shop environment, the aim is to make batching 

and sequencing decisions, which specify a partition of the 

jobs into batches on each machine, and a processing order 

of the batches on each machine, respectively, so that the 

makespan is minimized. Webster S and Baker K R [8] 

consider scheduling groups of jobs on a single machine 

on three basic models known as family scheduling with 

item availability, family scheduling with batch 

availability, and batch processing. Baptiste P [9] analyses 

the single parallel batching and serial batching scheduling 

problems that all jobs are arrived at time 0 , present the 

dynamic programming algorithms respectively. But, the 

attention is relatively less for the coordination of 

transportation and serial batching scheduling at present. 

In this paper, we investigate the problem of 

coordinated scheduling on single serial batching machine 

with transportation. At time 0 , the n  jobs 
1 2, , ,J J   

nJ  

located at a holding area are transported by the m  

vehicles to a serial batching machine for further 

processing, the transportation times are 
1 2, , , nt t t , 

respectively. In the transportation stage, each vehicle can 

deliver only one job at a time, the transportation time of 

one job transported by different vehicles is identical, and 

the empty moving time of each vehicle from the batching 

machine back to the holding area is t . In the production 

stage, the processing time of the job jJ  is 

,jp 1,2 ,j n  , the serial batching machine can process 

several jobs simultaneously as a batch, the maximum 

number of jobs that can be processed simultaneously in 

the serial batching machine is called capacity c  of that 

batching machine, the completion time jC  of any job jJ  

in each batch is the fixed set-up time s  plus the total 

processing times of the jobs in this batch. Once 

processing of a batch is initiated, it cannot be interrupted 

and other jobs cannot be introduced into the machine 

until processing is completed. Each batch to be processed 

on the batching machine occurs a processing cost, b  is 

the number of batches to be processed on the batching 

machine,  ( )b  is the linear non-decreasing function of 

b , and denote the processing cost function. The objective 

is minimizing the sum of the makespan and the total 

processing cost
max ( )C b . This problem is denoted as 

max1| 1, 1, | ( )D m c s batch C b     . 

The paper is organized as follows. In Section 2, we 

give some preliminaries and a useful lemma. Section 3 

studies a special case, and provides a polynomial time 

dynamic programming algorithm. In Section 4, we study 

the complexity of the problem; propose the TSPT-DP 

algorithm to solve the problem. Finally, some 

conclusions are made in Section 5. 

 

2 Preliminaries 

 

Let   and    be a feasible solution and an optimal 

solution, respectively. We will use the following 

notations and definitions frequently in the reminder of 

this paper.  

( )b b  : the total number of batches in ( )   . 

( )l lB B  : the l -th processing batch in ( )   , 

1, 2, , ( )l b b   . 

( )l ln n  : the number of jobs processed up to the l -th 

batch, clearly, 
k k

n n n




  . 

| | (| |)l lB B 
: the number of jobs processed in 

( )l lB B  , clearly, 1 1| | (| | )l l l l l lB n n B n n     

     . 

( )j jr r  : the arrival time of the job jJ , i.e., the time 

when jJ  arrives at the serial batching machine. 

[ ] [ ]( )j jr r  : the arrival time of the j -th arrived job. 

( )l lS S  : the starting time of the batch ( )l lB B    . 

( )j jC C  : the completion time of the job jJ . 

( )( ( ))C l C l  : the completion time of the batch 

( )l lB B 
, clearly, ( )( ( ))j jC C l C C l     , for 

( )j l lJ B B  . 

The notations can be abbreviated to [ ], , , , ,l j j lb n r r B  

| |lB , et al. Let
0 0n  , then, ( ) iC i S s 

ij B jp , 

max ( )
ib j B jC C b S s p    . In situation where the 

dimension on the measurements 
maxC  and ( )b  is 

difficult to unify, we may adjust cost function ( )b  to 

uniform dimension with the maximum completion time. 

For ease of presentation, denote our problem as TSBSM. 

Although the problem considered in this paper is 

different from that in Hall N G and Potts C N [10], some 

properties can be found in the same way. 

Lemma 1. For problem 1| 1, 1, ,D m c s batch     

max| ( )jp p C b  , there exists an optimal solution    

in which: 

(i) There is no idle time between the jobs transported 

on each vehicle in the transportation part. 

(ii) All jobs assigned to the same vehicle are 

scheduled in the non-decreasing order of transportation 

times. 
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(iii) The starting time of each batch on the serial 

batching machine is made either an arrival time of some 

job on the machine or immediately at a time when the 

machine becomes available. 

(iv) earlier arrived jobs are processed no later than 

those arrived later. 

Usually, the quality of an approximation algorithm 

(denoted by H ) is measured by the worst case ratio of 

the algorithm, which is defined as the smallest number   

such that HF F   for all instances, where HF  and F   

denote the objectives of solution produced by H  and the 

optimal algorithm, respectively. 

 

3 A polynomial time algorithm for a special case  

 

In this section, we consider a special case where the job 

assignment to the vehicles is predetermined. It is evident 

that the problem reduces to an optimal serial batching 

problem in this case. This special case characterizes the 

practical situation where the arrival times of the jobs are 

known. Now, we can provide a dynamic programming 

algorithm to solve the optimal serial batching problem in 

a polynomial time as follow. 

Re-index all jobs , 1,2, ,jJ j n  , in accordance 

with the job arrival time on the serial batching machine, 

i.e., 
1 2 nr r r   , the processing time jp  of any job 

jJ  on the serial batching machine is p . It suffices to 

consider one job sequence and apply it to the processing 

of jobs on the serial machine. So the starting time of each 

batch on the machine need to be decided, and this can be 

done by dynamic programming. 

By Lemma 1(iii), the starting time 
lS  of the batch 

lB  on the serial batching machine is either the 

completion time ( 1)C l  of the batch 
1lB 

 or the arrival 

time 
lnr  of the last arrived job 

lnJ  in this batch. In the 

first case, 
1 1( 1) | |l l lS C l S s B p      , let jB  denote 

the earliest processing batch which the jobs are processed 

consecutively until the batch 
lB , the starting time of the 

batch jB  must be the arrival time 
jnr  of the last arrived 

job 
jnJ  in this batch, so, 

1( ) ( )
jl n l jS r l j s n n p     ,  

1( ) (| | | |)
jn j lr l j s B B p      . (1) 

Denote 1l j ln n q  , satisfy 
lq j n  . In the 

second case, 
ll nS r . 

Hence, the possible starting time of the bath 
lB  on the 

serial batching machine can be , , ,j jr r s xp    

jr zs yp  , where / 1 ,n c z l n      x y n j  , 

and 0 0S  . 

Define ( , , )lf k j S  as the minimal makespan to 

schedule the first k  jobs 
1 2, , , kJ J J , provided that the 

current last batch 
lB  contains jobs 1, , ,j j kJ J J  , and 

starts to be processed at time 
lS , where 

1 ,k j c   l kS r . If we know the available time 

1( 1, , )lf j i S   of the batching machine before process 

jobs 1, , ,j j kJ J J  , then the starting time of the batch 
lB  

is actually fixed, i.e., 
1max{ ( 1, , ), }l l kS f j i S r  .  

( , , )lf k j S  satisfies the following three properties: 

(i) 0 1k j c    ; 

(ii) , , ,l j j jS r r s xp r zs yp      , and  

1 , 2,3, ,l lS S s p l b     , where x y n  , 

/ 1n c z l     ; 

(iii) /k c l k    . 

Otherwise, ( , , )lf k j S   . 

Dynamic Programming Algorithm DP  
Initial condition: 

(0,0,0) 0f  ; 

Recursive relation:  

1( , , ) min{max{ ( 1, , ), } ( ( 1) ) |l l kf k j S f j i S r s k j p     

 all possible states 
1( , )li S  } ,where 

11, , lj i S   satisfy the 

three condition described above. 

Optimal solution:  

( ) min{ ( , , ) ( ) |bF n f n j S b   all possible states 

( , )}bj S . 

By recording all the necessary information in the above 

process, an optimal schedule can be calculated. It is not 

difficult to see that the time complexity of the algorithm 

DP  is
4( )O cn . The following theorem can be obtained. 

Theorem 1. Algorithm DP  finds an optimal 

schedule for problem 

max1| 1, 1, , |jD m c s batch p p C       

( )b  in 
4( )O cn  time when the job assignment to the 

vehicles is predetermined. 

We now demonstrate the above solution method with a 

numerical example. 

Example. Job set 
1 2 3 4{ , , , }J J J J J , 2, 1, 3,m t c    

1 2 3 41, 4, 2, 1, 1, 2, ( ) 5 ,t t t t s p b b        assume 

that 
1J  and 

2J are transported by one vehicle, 
3J  and 

4J  

are transported by another vehicle. From the above 

method, we know 
1 2 3 41, 2, 4, 6r r r r    . 

We have the following results by the dynamic 

programming algorithm DP : 

1 1(1,1, ) max{ (0,0,0), } ( ) 4f S f r s p    ; 

1 2(2,1, ) max{ (0,0,0), } ( 2 ) 7f S f r s p    ; 

2 1 2(2,2, ) max{ (1,1, ), } ( ) 7f S f S r s p    ; 

1 3(3,1, ) max{ (0,0,0), } ( 3 ) 11f S f r s p    ; 

2 1 3(3,2, ) max{ (1,1, ), } ( 2 ) 9f S f S r s p    ; 
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2 1 3(3,3, ) max{ (2,1, ), } ( ) 10f S f S r s p    ; 

3 2 3(3,3, ) max{ (2,2, ), } ( ) 10f S f S r s p    ; 

2 1 4(4,2, ) max{ (1,1, ), } ( 3 ) 13f S f S r s p    ; 

2 1 4(4,3, ) max{ (2,1, ), } ( 2 ) 12f S f S r s p    ; 

2 1 4(4,4, ) max{ (3,1, ), } ( ) 14f S f S r s p    ; 

3 2 4(4,3, ) max{ (2,2, ), } ( 2 ) 12f S f S r s p    ; 

3 2 4

2 4

(4,4, ) min{max{ (3,2, ), } ( ) 12,

max{ (3,3, ), } ( ) 13} 12

f S f S r s p

f S r s p

   

   
; 

4 3 4(4,4, ) max{ (3,3, ), } ( ) 13f S f S r s p    ; 

(4) min{ (4, , ) ( ) |bF f j S b   all possible states 

 
2( , )} (4,3, ) (2) 22bj S f S    . 

The optimal schedule on the serial batching machine 

is finally found as 1 3 4 2{{ , },{ , }}J J J J    with the 

optimal objective value of 22. 

 

4 Complexity and approximation algorithm  

 

In this section, we firstly show that for TSBSM is NP-

hard by reducing the 2-Partition problem to the decision 

version of this problem when the job assignment to the 

vehicles is not predetermined, secondly propose an 

approximation algorithm for the problem TSBSM. 

 

4.1 COMPLEXITY  

 

2-Partition problem: Given 1h  positive integers ,ja  

1,2, ,j h  , and a , such that 
1

2
h

j

i

a a


 . The question 

asks if the set {1,2, , }H h   can be divided into two 

disjoint subsets 
1G  and 

2G , such that 
1 2G G H  , 

1 2j G j j G ja a a    . 

Theorem 2. The problem 

1| 1, 1, ,D m c s batch     

max| ( )jp p C b   is NP-hard even if 2m  . 

Proof. To any instance of the 2-Partition problem, we 

construct an instance of TSBSM as follow. There are 

2n h  jobs split into two job sets: the J  -jobs (partition 

jobs) denoted by , 1,2, ,jJ j h   , the J  -jobs (auxiliary 

jobs) denoted by , 1,2, ,jJ j h   . Their transportation 

times and other parameters are given as follows: 

Transportation times: 2 , 0, 1,2, ,
j j

jJ J
t a t j h

 
    ; 

Returning time: 0t  ; 

Set-up time of the serial batch: s a ; 

Processing time: , 1,2, , 2j

a
p j h

h
   ; 

Processing cost: ( ) 3b ba  ; 

Machine capacity: c h ; 

Threshold value: 10y a . 

We are going to show that for the constructed 

scheduling problem instance, a schedule   with 

max ( )C b y   exists if and only if the 2-Partition 

problem has a solution. 

If there is a solution to the 2-Partition problem 

instance, we show that there is a schedule   with 

max ( )C b y   for the scheduling instance. Suppose that 

the 2-Partition problem instance has a solution 
1G  

and
2G . Now construct the following schedule : 

Since the transportation times of J  -jobs and the 

returning time of the vehicles are equal to 0 , J  -jobs are 

transported to the serial batching machine, and two 

vehicles are available at time 0 , the machine can first 

process these jobs. Due to c h , the J  -jobs are 

processed as the first batch at time 0 , and the completion 

time (1)C  of this batch is equal to 1 jj J
S s p


   

0 2
a

a h a
h

    . Next, vehicle 1  transports the jobs 

of 
1G  one by one, and vehicle 2  transports the jobs 

of
2G . Let 

iT  denotes the total running time of vehicle i , 

for 1,2i  , we can see 

that
1 2

1 22 , 2
j G j Gj jJ J

T t a T t a
 

 
     . The J  -jobs 

are processed as the second batch at time 2a , and the 

completion time (2)C  of this batch is equal to 

2 2 4jj J

a
S s p a a h a

h
      . It is easy to check 

that
max ( )C b y  . (See Figure 1) 

 
If there exists a schedule   with 

max ( )C b y   to 

the instance of TSBSM, we show that the 2-Partition 

problem has a solution. 

First, the following properties hold in schedule  : 

(i) Schedule   exactly contains two batches, i.e., 

each batch contains exactly h  jobs. 

(ii) All J  -jobs are processed as the first batch at 

time 0 . 

(iii) All J  -jobs are processed as the second batch at 

time 2a . 

Next, we prove three properties as follows: 

(i) Suppose that there are b  batches in schedule  . 

Due to , ( ) 3c h b ba  , we have 2 3b  . If 3b  , 

the sum of the makespan and the processing cost 
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max ( )C b  is more than 9jj J J
s p a

  
  12a , 

which is a contradiction. 

Hence, schedule   exactly contains two batches and 

each batch contains h  jobs. 

(ii) Denote 
1S  and 

2S  as the starting time of the first 

batch and the second batch on the serial batching machine, 

respectively. Note that 
1 1 22

a
S s h S a S

h
     . Since 

the processing time of each batch on the machine is 2a , 

we have 
max 2( ) 2 6 10C b S a a a     . Hence, we 

obtain that 
1 0S   and 

2 2S a . At time 0 , there are only 

J  -jobs available. Thus, all J  -jobs are processed as the 

first batch at time 0 . 

(iii) From (i) and (ii), we know that all J  -jobs are 

processed as the second batch at time 2a . 

Let 
1G  and 

2G  be a partition of J  -jobs. We assume 

that vehicle 1  transports the jobs of 
1G  one by one, and 

vehicle 2  transports the jobs of 
2G  one by one. Let 

iT  

denotes the total running time of vehicle i , for 1,2i  . 

Based on the above discussion, the starting time of the 

second batch satisfies 
2 1 22 max{ , ,2 }S a T T a  , where 

1 21 22 2 , 2 2j G j j G jT a a T a a      . Due to 

1 2 2 4j

j H

T T a a


   , we have 
1 2j G j j G ja a a    . 

Then it is easy to see that 
1G  and 

2G  form a solution to 

the 2-Partition problem instance. Theorem 2 follows. 

 

4.2 APPROXIMATION ALGORITHM  

 

The proof of theorem 2 indicates the problem 

max1| 1, 1, , | ( )jD m c s batch p p C b       is NP-

hard even if 0t  . When the returning time of vehicle is 

0 , we present the following approximation algorithm and 

analysis its worst case ratio. 

TSPT-DP Algorithm 

Step 1: In the transportation part, assign jobs to 

vehicles by the SPT rule of the transportation times, i.e., 

always assign the shortest transportation time job to the 

available vehicle ; 

Step 2: Renumber the jobs in the non-decreasing 

arrival time order, i.e., 
1 2 nr r r   ; 

Step 3: In the processing part, use the dynamic 

programming algorithm DP  for batching and processing 

jobs. 

Let   be the solution generated by the TSPT-DP 

algorithm for the problem 1| 1, 0, 1,D m t c     

max, | ( )js batch p p C b   . We denote by     the 

solution generated by assigning jobs to vehicles by the 

SPT rule of the transportation times, and processing the 

same number of jobs in each batch coincide with that of 

the optimal solution    as early as possible (maybe wait). 

Therefore,    transports jobs the same as   and uses 

the same batching policy as   . Consequently, we have 

, 1,2, ,j jr r j n 
   , and ,1 ,i in n i b b        

( ) ( )b b 
  . By Theorem 1,  

max max( ) ( )C b C b    
 

   . (2) 

Lemma 2. 
[ ]

1
(2 ) ,1j jr r j n

m

      . 

Proof. Since 
[ ]jr  is the arrival time of the j -th 

arrived job in   , it follows 
[1] [2] [ ]nr r r     , and 

1 2, , , jt t t  are the j  minimum transportation times. 

Thus, we have 

[ ] [1] [2] [ ] [ ]

1 1

1 1
max{ , , , , } max{ , }

j j

j j l j l

l l

r t t t t t t
m m



 

   . (3) 

On the other hand, as    uses the SPT rule of the 

transportation times to assigning jobs to the vehicles, 

[ ]

1

1 1 1
(1 ) (2 ) ,1 .

j

j j l j

l

r t t r j n
m m m

  



        (4) 

Lemma 3. 
1

( ) (2 ) ( )C b C b
m

      . 

Proof. Since    and    have the same number of 

jobs in each batch, we denote 

i i in n n    , | | | | | |i i iB B B    1,1i in n i b b 

     . 

inr
 

 and [ ]inr  are denoted as the arrival time of the last 

arrived job 
inJ  

 and [ ]inJ 
 in the i -th batch in    and   , 

respectively. 

By Lemma 2 and (4), we have 

1 11 [ ] 1

1
(1) | | (2 ) | |n nC r s B p r s B p

m

           

1[ ] 1

1 1
(2 )( | | ) (2 ) (1)nr s B p C

m m

       . (5) 

By Lemma 1(iii) and (5), 

2 2(2) max{ , (1)} | |nC r C s B p    
    

2[ ] 2

1
(2 )max{ , (1)} | |nr C s B p

m

      

2[ ] 2

1
(2 )(max{ , (1)} | | )nr C s B p

m

      

1
(2 ) (2)C

m

  . (6) 

Repeat the above process, we get the result 

( ) max{ , ( 1)} | |
b

n b
C b r C b s B p



    




    
     

[ ]

1
(2 )max{ , ( 1)} | |

b
n b

r C b s B p
m




        
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1
(2 ) ( )C b

m

   . 

Theorem 3. For the problem 

1| 1, 0, 1,D m t c     max, | ( )js batch p p C b   , 

the worst case ratio of TSPT-DP algorithm is not greater 

than 
1

2
m

 , and the bound is tight. 

Proof. By (2) and Lemma 3, we have  

max max( ) ( ) ( ) ( )C b C b C b b        
    

      

1
(2 ) ( ) ( )C b b

m
      

max

1
(2 )( ( ))C b

m
    . (7) 

We can conclude that the worst case ratio of TSPT-

DP algorithm is at most 
1

2
m

 . To show the tightness, let 

us consider the following instance: 2 1n m m   , 0t  , 

2 21 2 1
1,

m m m m
t t t t m

  
     , 0s p  , 1c  , and 

( ) 0b  . Clearly, both TSPT-DP and the optimal 

algorithm must process jobs in 2 1m m   batches. 

Consequently, we have max 2 1C m   , maxC m  , and 

( ) 0b  , ( ) 0b   . Thus, the desired result follows.  

 

5 Conclusion  

 

In this paper, we studied the problem of coordinated 

scheduling on a serial batching machine with 

transportation. Under the condition of the job processing 

times are equal, if the job assignment to the vehicles is 

predetermined, we provide a polynomial time dynamic 

programming algorithm, for the general problem, we 

prove it is NP-hard. When the returning time of vehicle 

is 0 , we present the approximation algorithm TSPT-DP 

and prove that the worst case ratio of the algorithm is not 

greater than 
1

2
m

 , and the bound is tight.  

Several possible extension to this research can be 

considered, such as, minimizing maximum job tardiness, 

developing effective heuristics to solve the general 

problem, et al. 
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