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Abstract 

With theoretical analyses, the stress-wave propagation and reflection between two elastic bars, whose left side achieved a triangular 

wave load, is mainly studied. Considering the effects of pulse width of the load, length and wave impedance of the bars and the 

relationship between the length of the load wave and the two bars, the regularities of the stress-wave propagation and reflection 

between the two bars is analysed, and the formulas for calculating the interaction time and the separation time of the two bars are 

derived, in three different conditions. The same problems in three different conditions are simulated by using AUTODYN, and 

curves of displacements of points at contact surface of the two bars varying the time are given. According these curves, the 

simulating results of the separation time can be obtained. By the comparison of the simulating results and the theoretical calculated 
results using formulas derived in this paper, the correctness of the theoretical analyses and formulas here is demonstrated. 
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1 Introduction 

 

With the rapid development of high-tech, the field of 

such relate to explosion and shock problem as national 

defence technology, aerospace industry, new material 

technology, etc, is more and more widely, especially in 

areas such as the arms penetration and explosion, high-

speed impact, dynamic response materials, structural 

damage and other protective aspects [1]. As we know, the 

study of those problem mentioned above is related to the 

stress wave propagation. Stress wave propagation 

characteristics in multi-layer composite structure are a 

newly rising research field [2-4]. Although the current 

experimental study of homogeneous material for 

macroscopic dynamic mechanical behaviour and impulse 

response has developed many ripe methods, such as 

Taylor test, split Hopkinson pressure bar, flat impact and 

detonation technology [5-7], the structures of the actual 

project are usually layer structures stacked by a variety of 

materials with different physical properties. Because of 

light quality, strong design, good performance and strong 

impact absorbing characteristics of these kind of 

structures, they have become one of the hot issues of 

structural engineering applications in recent years [8]. 

Taking into account that the multi-layer dielectric stress 

wave propagation problem in the actual project is very 

complicated, as a theoretical analysis here, the research 

was focused on the stress wave propagation and 

reflection of two elastic bars after the loading of a 

triangular wave. Recently, the most widely application of 

experimental studies of such problem is the split 

Hopkinson pressure bar's (SHPB) [9, 10], also known as 

the Kolsky bar. SHPB technology is on the basis of one-

dimensional stress wave theory, which requires the long-

thin-bar is linear, isotropic and the dispersion effect can 

be ignored, meanwhile, the cross-section of the bar in the 

axial direction is assumed to be a constant and the bar to 

maintain flexibility and uniform stress state in the process 

of loading and unloading [11]. As a theoretical analysis 

of the situation above, the theoretical analysis of this 

article and the following derivation is also based on the 

same requirements above. 

 

2 Theoretical analysis and calculation formula 

derivation 

 

In Figure 1, two elastic bars contact with each other, and 

a input triangular wave loads with the wavelength of   

acts on the left of bar 1. In the following, the interaction 

time and the separation time of the two bars will be 

analyzed. L1 and L2 is respectively the length of bar 1 and 

bar 2, as well as c1 and c2 the triangular-wave propagation 

velocity in bar 1 and bar 2. We assume that the two bars 

are the same, that is to say, c1 and c2 are equal, and can be 

taken as c. Next, we will prove that the interaction time 

and the separation time of the two bars are determined by 

 , L2, c2, and the relative relationship between   and L2. 
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FIGURE 1 Model sketch of this problem. 

 

2.1 CASE 1:  /2<L2 

 

 
 

a) 
 

 
 

b) 
 

 
c) 

FIGURE 2 Diagram of the stress-wave propagation when  /2 < L2 

Since the load is linear and the bars are elastic, the 

relationship between stress in bars and the input load is 

linear. Therefore, for easy discussion, the stress of bars 

will be expressed in the input load in following analysis. 

When the front of the stress wave come location O, 

which is the contact surface of bar 1 and bar 2, the 

interaction force between the two bars occurs, and 

compressive stress appears in these two bars, as shown in 

Figure 2a. When the end of the stress wave passes 

location O, the interaction force disappears, and the two 

bars have a same velocity, as shown in Figure 2b. Then, 

the interaction time of bar 1 and bar 2 can be obtained by: 

interactiont
c


 . (1) 

When the stress wave comes to location M, which is 

the right end of bar 2, stress wave reflection occurs at the 

free surface, and an extension wave propagation to the 

left appears [12]. Particles of the bar will get a velocity to 

the right after the pass of the extension wave. So when 

the extension wave comes to the location O, bar 1 and bar 

2 will separate from each other, as shown in Figure 2(c). 

Then, the separation time of bar 1 and bar 2 can be 

obtained by: 

1 2

separation

2L L
t

c


 . (2) 

 

2.2 CASE 2: /2 > L2 and /2 < (L1+L2) 

 

 
 

a) 
 

 
 

b) 
 

 
 

c) 
 

 
d) 

FIGURE 3 Diagram of the stress-wave propagation when  /2 > L2 

and  /2 < (L1+L2) 

When the front of the stress wave come location O, 

the interaction force between the two bars occurs, and 

compressive stress appears in these two bars, as shown in 

Figure 3a. When the front of the stress wave comes to the 

right end of bar 2 but the mid of the stress wave has not 

come to location O, stress wave reflection occurs at the 
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free surface, and an extension wave propagation to the 

left is formed. At the time of this extension wave comes 

to the location O, the end of the stress wave has not come 

to the location O yet, and meanwhile, the compressive 

stress is higher than the stress generated by the reflection 

extension wave, so the interaction force between bar 1 

and bar 2 is always maintained, which will keep the two 

bars contacting with each other and moving together, as 

shown in Figure 3b. As the mid of the stress wave comes 

to the right end of bar 2 and the front of the tensile stress 

wave passes the location O, although the end of the stress 

wave has not come to the location O, the tensile stress at 

location O is equal to the input stress, which means the 

stress at location O is zero at this time, which can be seen 

in Figure 3c. As shown in Figure 3d, with the continuing 

wave propagation, bar 1 and bar 2 will separate from each 

other, and the separation time of bar 1 and bar 2 can be 

obtained by: 

1 2

separation

0.5 L L
t

c

  
 . (3) 

According to the analysis above, it is easy to get the 

interaction time of bar 1 and bar 2 by: 

2

interaction

0.5 L
t

c

 
 . (4) 

 

2.3 CASE 3: /2 > (L1+L2) 

 

This is a very complex case, and the interaction time and 

separation time are closely related to the waveform of the 

input stress. In order to make the research more 

convenient, a special stress wave propagation graph was 

made, which was shown in Figure 4. 

 

 
FIGURE 4 Diagram of the stress-wave propagation when /2 > (L1+L2) 

 

Assume the distance between the front wave and the 

extension wave A is x at the time of the extension wave A 

comes to location O the first time. The relationship 

between the tensile stress and the compression stress 

were given in Figure 4. For example, the stress in 

location B appears, when the extension wave comes to 

the M free surface - that is, after the input stress wave 

reflected in the left free surface of bar 1, a reflect 

compression wave formed, with the wave propagation 

continuing a length of bar 1, the compressive stress in 

contact surface of bar 1 and bar 2 appears. Other cases 

have the similar analysis above. 

It is easy to be proved that there is a range of x, and 

the range is not larger than half of the wavelength. If x is 

equal to half of the wavelength, the location A will be the 

top of the input wave when the reflection extension wave 

comes to location A at the first time. And this location A 

is where the tensile stress of the contact surface could rise 

to a maximum. The Equation of the tensile stress and the 

compressive stress will be derived next. 

 

2.3.1 Tensile stress 

 

The slope of the triangular wave is: 

/ 2

p
k


 . (5) 

From geometrical relations in Figure 4, the slope on 

the expression of stress and x is: 

k
x


 . 

Then: 

k x   . (6) 

According to Figure 4, it is easy to know the number 

of the tensile stress waves reflected back and forth at this 

point is: 

1 2

1
2( )

x
N

L L
 


【 】 3 (7) 
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The symbol 【 】 indicates that the number is rounded 

to the nearest whole number. 

For the i-th reflection (i≥2), the tensile stress satisfies 

the following Equation: 

1 2( 1) [2( )]

ik
i L L

 


  
. 

Then: 

1 2( 1) [2( )]i k i L L       . (8) 

All the tensile stress at the contact surface is the sum 

of 
i : 

tensile 1 2

2

{ ( 1) [2( )]}
N

i

k i L L  


       . (9) 

 

2.3.2 Compressive stress 

 

The compressive stress at location B can be obtained 

from geometrical relations in Figure 4: 

1

- '

2
k

L

 
 . 

Then: 

1' 2k L     (10) 

As the same, according to Figure 4, it is easy to know 

the number of the tensile stress waves reflected back and 

forth at this point is: 

1

1 2

2
1

2( )

x L
M

L L


 


【 】 . (11) 

For the i-th reflection (i≥2), the compressive stress 

satisfies the following equation: 

1 2

' '

( 1) [2( )]

ik
i L L

 


  
. 

Then: 

1 2' ' ( 1) [2( )]i k i L L        (12) 

So, all the tensile stress at the contact surface is the 

sum of 'i : 

compressive_reflect 1 2

2

' { ' ( 1) [2( )]}
M

i

k i L L  


        (13) 

When 
2( ) 2

2
x L


  , we get: 

compressive_incident

2
2

k
L

 
 . 

Then: 

compressive_incident 22k L    . (14-1) 

When 
20 ( ) 2

2
x L


   , we get: 

compressive_incident

22

p
k

p
k

L













 
 
 

. 

Where   is the distance between location A and the 

mid of the wave, so: 

compressive_incident 22 2p L k     (14-2) 

From (13), (14-1) and (14-2), we obtained the total 

compressive stress: 

compressive compressive_reflection compressive_incident

1 2

2

2 2

2 2

' { ' ( 1) [2( )]}

2 ( ) 2
2

2 2 0 ( ) 2
2

M

i

k i L L

k L x L

p L k x L

  

 









 

      


    


     


  (15) 

If tensile stress is larger than compressive stress on 

the contact surface, bar 2 and bar 1 will separate from 

each other. 

Assume tensile compressive  , we get xseparation: 

2 1

2

1 2

1

separation

2

2

1 1 2

1

1
{2 2

[ ( 1)]
( ) 2
2

[ ( 1) 2( )]}

1
{2 / 2

[ ( 1)]
0 ( ) 2

2
2 [ ( 1) 2( )]}

N

i M

N

i M

L L M
N M

x L

k i L L

x

p k L
N M

x L

L M k i L L





 

 


    

  


  


 
  
  

  
    






(16) 

and: 

1 2

1

1 2

/ 2

1
2( )

2
1

2( )

p
k

x
N

L L

x L
M

L L




 



 


 
 



【 】

【 】

. (17) 

So the separation time of bar 2 and bar 1 can be got 

by: 

separation 1 2

separation

2x L L
t

c

 
 . (18) 
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And the interaction time: 

separation 2

interaction

2x L
t

c


 . (19) 

Equations (16) and (18) shows that, the separation 

time and the interaction time of bar 1 and bar 2 are 

determined by the length of bar 1 and bar 2, the length of 

the stress wave and the wave resistance (equals to the 

product of stress wave propagation velocity and the 

density of the bars). 

If the calculation results of Equation (16) is that 

xseparation is larger than length of the wave, bar 1 and bar 2 

will not separate, although the reflective tensile stress of 

the end of the input wave has arrived at the contact 

surface of the two bars. Then, for this situation, the two 

bars will always move together, and never separate from 

each other. This situation is actually a completely 

inelastic collision. 

 

3 Numerical simulation and verification 

 

In order to verify the correctness of the theoretical 

analysis above, numerical simulation of the three cases 

above has been carried out by AUTODYN, and results of 

the separation time were given. The comparison between 

these numerical results and the analytical solutions 

according to the theoretical analysis in this paper has 

been done also. 

In the following simulation and computation, bar 1 

and bar 2 are both the 20 # steel (E=210 GPa, =7.82 

g/cm3, =0.28), as well as the length both 1 metre. 

 

3.1 CASE 1:  /2<L2 

 

Conditions of the input triangle wave: 0=300 Mpa, 

=292.96 mm. 

The numerical simulation has been done by 

AUTODYN, and the results of displacement of points at 

the right side of bar 1 and the left side of bar 2 varying 

the time was shown in Figure 5. 

 

 
FIGURE 5 Curves of displacement of points at the right side of Bar 1 

and the left side of Bar 2 varying the time 

 

According to the simulations and Figure 5, we got the 

separation time of bar 1 and bar 2 was about 0.5117 ms. 

As the elastic wave velocity in the bars is: 

(1 )
5859.24 mm / ms

(1 )(1 2 )

E
c



  


 

 
. 

According to Equation (2), we got: 

1 2

separation

2
0.5120 ms

L L
t

c


  . 

The relative error was: 

0.5120 0.5117
0.058%

0.5117



  . 

And the interaction time of bar 1 and bar 2 could also 

been obtained from Equation (1): 

interaction 0.1 mst
c


  . 

 

3.2 CASE 2: /2 > L2 and /2 < (L1+L2). 

 

Conditions of the input triangle wave: 0=300 Mpa, 

=1464.80 mm. 

The numerical simulation has been done by 

AUTODYN, and the results of displacement of points at 

the right side of bar 1 and the left side of bar 2 varying 

the time was shown in Figure 6. 

According to the simulations and Figure 6, we got the 

separation time of bar 1 and bar 2 was about 0.63 ms. 

As the elastic wave velocity in the bars is: 

(1 )
5859.24 mm/ms

(1 )(1 2 )

E
c



  


 

 
. 

According to Equation (2), we got: 

1 2

separation

0.5
0.5913 ms

L L
t

c

  
  . 

The relative error was: 

0.63 0.5913
6.1%

0.63



  . 

The interaction time of bar 1 and bar 2 could also been 

obtained from Equation (1): 

2

interaction

0.5
0.4206 ms

L
t

c

 
  . 
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FIGURE 6 Curves of displacement of points at the right side of Bar 1 

and the left side of Bar 2 varying the time 

 

3.3 CASE 3: /2 > (L1+L2) 

 

Conditions of the input triangle wave: 0=300 Mpa, 

=14648 mm. 

The numerical simulation has been done by 

AUTODYN, and the results of displacement and velocity 

of points at the right side of bar 1 and the left side of bar 

2 varying the time was shown in Figure 7 and Figure 8. 

With reference to Figure 7 and Figure 8 we could see 

that bar 1 and bar 2 almost always move together, and 

don't separate from each other. Figure 8 showed that, 

during the first 5 ms, velocities of bar 1 and bar 2 have 

been increasing. After the first 5 ms, both bars travelled 

in a constant velocity. 

 
FIGURE 7 Curves of displacement of points at the right side of Bar 1 

and the left side of Bar 2 varying the time 

 

FIGURE 8 Curves of velocity of points at the right side of Bar 1 and the 

left side of Bar 2 varying the time 

As the elastic wave velocity in the bars is: 

(1 )
5859.24 mm/ms

(1 )(1 2 )

E
c



  


 

 
. 

According to the analysis in section II, we could get 

the following result by calculation: 

xseparation >(20) 

Solving the Equation (16) directly is a difficult work, 

but Equation (20) can be verified indirectly: substituting 

any xseparation which was smaller than the wavelength " in 

Equation (9) and Equation (15), and solving these 

equations, we could obtain that compressive was always 

larger than tensile. This result means that the compressive 

stress is always larger than the tensile stress at the contact 

surface of bar 1 and bar2. So the two bars didn't separate 

from each other. And this conclusion is consistent with 

the numerical simulation. 

 

4 Conclusions 

 

On the basis of the basic theory and laws of elastic wave 

propagation and reflection, stress wave propagation and 

reflection between two contact elastic bars, one of which 

was loaded by a triangle wave on the left, has been 

researched. For three different cases, formulas of 

separation time and interaction time have been derived. 

Numerical simulation of these three cases has also been 

done by using AUTODYN, and comparison of the 

numerical simulation and the results obtained by the 

method of this paper showed that the formulas derived 

here is correct. 
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