
COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12D) 162-167 Zhou Lei, Guo Shengchao

162

Thermal management of ARM SoCs using Linux CPUFreq as
cooling device

Lei Zhou1*, Shengchao Guo2

1Changshu Institute of Technology, Changshu, China

2Freescale Semiconductor, Inc., Shanghai, China

Received 13 October 2014, www.cmnt.lv

Abstract

While the performance of modern ARM System on Chips (SoCs) increases significantly than the previous generation, the power dissipation
and on-chip temperature becomes dramatically high. The existing thermal management solutions are mostly built on Advanced
Configuration and Power Interface (ACPI) and Dynamic Thermal Management (DTM) model for traditional desktop and server machines.
They do not directly apply on mobile ARM SoCs as it is. This paper proposes a solution for thermal management on high performance
ARM SoCs based on a model which is built on some ACPI thermal concepts and DTM DVFS mechanism. The thermal model is
implemented on Freescale i.MX6Q SoC with Linux Kernel 3.6. It uses a lot of help from Linux thermal infrastructural and CPUFreq
subsystem, and builds a cooling device backed by CPUFreq driver. A comparison testing on i.MX6Q shows that the cooling device can
effectively controls the on-chip temperature around a designed threshold value. The thermal model is built on generic thermal hardware
support and common software infrastructural, and therefore should work universally for other ARM SoCs.

Keywords: ARM, Thermal, i.MX6Q

1 Introduction

ARM System on Chips (SoCs) were initially designed for
general embedded applications with low power dissipation
being the principle, and thermal was never a practical
concern in those days. However, the situation gets changed
since modern ARM SoCs are widely adopted on mobile
devices like smart phones and tablets. To provide a better
user experience on these devices, the SoCs are designed
with much higher processor frequency and more CPU cores.
The consequence of such design is that the power
dissipation is much higher, and much more heat gets
generated than the prior generation ARM SoCs. The
Freescale i.MX28 application processor is one typical early
generation ARM SoC. It integrates an ARM9 core, and runs
at 454MHz as maximum. In comparison, the i.MX6 Quad
(i.MX6Q) produced by Freescale is a typical multi-core
ARM SoC for mobile devices, which integrates 4 Cortext-
A9 cores and runs up to 996MHz. For given use case,
i.MX6Q will obviously provide much higher performance
than i.MX28. But as demonstrated in Figure 1, the on-die
temperature of i.MX6Q increases dramatically faster and
reaches a much higher degree than i.MX28 in a testing with
CPU cores fully loaded.

When other on-chip modules run together with the CPU
cores under heavy load, modern high performance ARM
SoCs like i.MX6Q can easily reach an even higher
temperature than what Figure 1 illustrates. It’s well known
that an excessively high on-chip temperature can result in
performance degradation, poor reliability and signal
integrity issues [1, 2]. In addition, the leakage power
consumption increases exponentially with increasing chip
temperature. Higher temperature results in greater power
consumption, and this effect in turn increases the on-chip
temperature even higher. More importantly, running chip at

* Corresponding author e-mail: zhoulei@cslg.cn

high temperature will accelerate failure mechanisms, such
as dielectric breakdown and electro-migration, which may
result in a permanent damage to the chip. Hence there is
really a need of thermal management to control temperature
on these ARM SoCs.

30

40

50

60

T
e
m

p
e
ra

tu
re

 (
C

)

Time

i.MX28 i.MX6Q

FIGURE 1 Temperature comparison between i.MX28 and i.MX6Q

This paper proposes a solution for thermal management
on high performance ARM SoCs based on Linux Kernel
thermal framework and CPUFreq support. The paper is
organized as follows. Section 2 gives some background of
thermal management topic, including ACPI, DTM and
related works around thermal management on mobile
device. Section 3 introduces the i.MX6Q thermal support at
hardware level, and elaborates the design principles and
implementation details of the thermal model, which is built
on Linux ACPI thermal concepts and CPUFreq subsystem.
Section 4 demonstrates the effectiveness of the thermal
management model by running a comparison testing on
i.MX6Q, and discusses the future works for making the
model even more efficient for managing thermal on ARM
SoCs. Finally, Section 5 concludes that the thermal model is
built on common technology and generic frameworks,

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12D) 162-167 Zhou Lei, Guo Shengchao

163

therefore can universally work for other ARM SoCs besides
Freescale i.MX6Q SoC.

2 Background

2.1 ADVANCED CONFIGURATION AND POWER

INTERFACE

The Advanced Configuration and Power Interface (ACPI)
specification [3] was developed to provide a standardized
approach to configuring the hardware, systems, and
software necessary for power and thermal management.
ACPI defines a set of points on the temperature scale that
are referred to as cooling policies: active, passive and critical.
These are the trip points where the various cooling methods
might be triggered. As the CPU heats up and reaches the
active threshold, a fan might be turned on to cool down the
processor. If temperature continues to increase and passive
threshold is crossed, the system will need to reduce the
processor’s clock frequency to decease power dissipation.
Finally, if temperature continues to rise to the critical level
that might cause damage to the CPU, power should be
removed from all or part of the system.

While this whole thermal management model works
perfectly fine on desktop and server machines, the active
policy doesn’t really fit into mobile devices. Considering the
compact form factor of ARM based devices, cooling fan is
not really an option there, apart from the facts that cooling
fan requires additional power energy and generates noise.
Except that, the passive and critical policies should work for
ARM SoCs in general.

2.2 DYNAMIC THERMAL MANAGEMENT

Dynamic Thermal Management (DTM) refers to a range of
possible software and hardware strategies which work
dynamically to control a chip’s operating temperature at
runtime [4]. The key goal of DTM is to provide inexpensive
software or hardware responses to control the over-heating
of the chip and maintain the chip temperature always below
a critical temperature Tcritical. A trigger temperature
Ttrigger which is generally lower than Tcritical is defined as
the trip point, so that when the chip temperature reaches
Ttrigger, DTM is invoked to cool down the chip. There are
quit some DTM response mechanisms being researched and
proposed, but two most typical and practical techniques are
task scheduling and Dynamic Voltage and Frequency
Scaling (DVFS).

The general idea of task scheduling mechanism is
migrating heavy loading task away from an over-heated
core to a cooler core [5, 6, 7, 8]. While this technique might
work well for other CPU architecture, it doesn’t practically
work for ARM SoCs, because the existing ARM processors
do not generally have a reliable way to report thermal state
of individual core, but only the on-die temperature as a
whole. Also, as temperature is a complex function of
processor load and cannot really be easily predicted [8], for
achieving a good cooling effect, the task migrating
algorithms can be very complicated and difficult to
implement. On the other hand, DVFS becomes a very
effective mechanism for runtime thermal management, due
to the quadratic dependence of dynamic power voltage [9,

10, 11]. And more importantly, DVFS technique has been
widely adopted by modern ARM SoCs designs to manage
power dissipation [12], so it can be naturally employed to
implement dynamic thermal management for ARM SoCs.

2.3 RELATED WORKS

There has been some attempt to extend Linux ACPI support
designed for desktop and server machines to cover mobile
devices [13]. But that work was still around Intel X86
platforms, and relies on ACPI support from firmware to
manage processor cooling state. The ACPI is not supported
by ARM ecosystem at any level as of today. Also, that work
focuses on managing thermal at platform level rather than
processor itself, and requires a user application to make
decisions on thermal policy control. Such design shifts the
implementing burden and policy complexity to user applica-
tions, and adds the communication overhead between kernel
and user spaces, which results in a less efficient solution
than handling cooling policies in kernel space. There is also
another work choosing to completely ignore the existing
ACPI thermal support in Linux Kernel and manage thermal
within CPUFreq subsystem [14]. It implements a new
thermally-aware CPUFreq governor, which will directly
measures temperature as well as performance status of all
CPU cores and then select a CPUFreq level that would not
lead to the excessive temperature. While the whole solution
might work, it needs to build up every piece of thermal
model from the ground and plug the code into CPUFreq
subsystem, which makes less sense in terms of software
reuse and will likely results in architectural issue if the code
gets submitted to upstream kernel for inclusion.

From the introductions on ACPI and DTM above, it can
be seen that the DVFS based DTM provides a practical and
effective response to trigger temperature Ttrigger, which
can be well mapped to ACPI passive cooling policy and trip
point. While DTM assumes that Tcritical should never be
reached on a DTM based system, ACPI recommends remo-
ving power from system as the response to critical
temperature, which also applies on ARM SoCs. Therefore,
this paper proposes a thermal management solution for
ARM SoCs, which is built on top of ACPI cooling concepts
and DTM DVFS response mechanism. And Linux is chosen
as the software environment to implement the proposal,
because Linux Kernel has an existing thermal framework
designed for ACPI thermal management on X86 CPUs.
Though ARM SoCs do not support ACPI specification,
quite a lot of thermal concepts and common code can be
reused on ARM platforms. Also, the CPUFreq subsystem of
Linux Kernel perfectly supports DVFS mechanism for
ARM machines [15]. Using these fundamental infrastruc-
tural supports from Linux can make the implementation a
lot easier and help authors to focus on the innovation part of
the whole solution.

3 Thermal Management on i.MX6Q

3.1 I.MX6Q THERMAL SUPPORT

The i.MX6Q application processor integrates a Temperature
Monitor (TEMPMON), which implements a temperature
senor function based on temperature dependent voltage to

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12D) 162-167 Zhou Lei, Guo Shengchao

164

time conversion. The module features an alarm function
which can raise an interrupt if the temperature goes above a
programmed threshold. Software can read the temperature
sensor counter (TEMP_CNT) in conjunction with the fused
calibration data to determine the on-die operational
temperature.

FIGURE 2 Temperature measurement on i.MX6Q

Figure 2 shows the procedure of temperature measu-
rement on i.MX6Q. Nroom, Nhot and Thot are three values
that will be read from chip fuse. Nroom and Nhot are
TEMP_CNT values at room temperature 25°C and a hot
temperature which is specified by Thot. All these three
values are written into fuse bits based on the calibration
during chip fabrication. With Nmeas read out from
TEMP_CNT register, the temperature to be measured
Tmeas then can be calculated using (1).

25hot

meas hot meas hot

room hot

T
T T N N

N N

. (1)

Besides the temperature sensor, i.MX6Q supports
changing core voltage VDDARM and clock frequency at
runtime with DVFS technique, so that a Linux CPUFreq
driver can be implemented based on that as a cooling device
for thermal management. Table 1 lists the recommended
DVFS operating points of i.MX6Q as well as the corres-
ponding power dissipation and temperatures measured
under the condition that all CPU cores are fully loaded. The
data clearly indicates that the i.MX6Q DVFS function can
use effectively used to manage no-chip temperature.

TABLE 1 i.MX6Q DVFS characteristics

ARM Freqency

(MHz)

VDDARM

(V)

Power

(mW)

Temperature

(°C)

996 1.25 2080.50 59

792 1.15 1647.75 51

396 0.95 598.50 38

3.2 LINUX KERNEL THERMAL MODEL

The Linux thermal management model is built on the
concept of thermal zone. As shown in Figure 3, a thermal
zone, by definition, not only includes a sensor device
reading temperature of the region that the thermal zone
manages, but also a list of cooling devices associated with
the thermal zone, which are used to bring down the
temperature of the thermal zone under control of a governor.

FIGURE 3 Thermal zone device model

In a computer system with particular complexity, there
might be multiple thermal sensors for different regions, like
processor and motherboard. Multiple thermal zone devices
will be created for such systems. In Linux Kernel thermal
infrastructural, each thermal zone is represented by struct
thermal_zone_device and registered by calling function
thermal_zone_device_register(). And all registered thermal
zone device is maintained on thermal_tz_list. Each thermal
zone can have more than one cooling device to control
temperature of the thermal zone. Cooling devices can be
categorized into two types as per the cooling mode, active
cooling and passive cooling. Active cooling increases the
power consumption of the system, e.g. turning on a fan, to
reduce the temperature. Passive cooling reduces the power
consumption at the cost of system performance, e.g.
throttling processor clock, to lower down the processor
temperature. Each cooling device is registered by calling
function thermal_cooling_device_register() and identified
as a struct thermal_cooling_device in Linux thermal
framework. And all registered cooling devices are collected
on another list thermal_cdev_list. Function
thermal_zone_bind_cooling_device() searches given
thermal zone and cooling devices on thermal_tz_list and
thermal_cdev_list, and associates these cooling devices with
the thermal zone. Then under the control of a thermal
governor, cooling devices will perform particular operations
to react to the temperature change of the thermal zone.

3.3 MANAGE I.MX6Q TEMPERATURE WITH LINUX

THERMAL MODEL

Same as the most ARM SoCs with thermal support today,
i.MX6Q integrates one temperature sensor reporting on-die
temperature of the SoC. So one thermal zone device is
enough for the thermal model implementation on i.MX6Q.
Also, unlike traditional X86 platforms that generally have
multiple cooling devices for a single thermal zone, e.g. fan
as an active cooling device and processor throttling as a
passive cooling device, active cooling is not applicable for
i.MX6Q. Based on these facts, a simplified thermal model
as shows in Figure 4 is implemented on Linux for i.MX6Q
system.

There is one thermal zone driver which works as a
sensor driver in this model. It can report the on-chip
temperature by polling i.MX6Q TEMPMON block and also
program TEMPMON to send interrupt when temperature
reaches a threshold value. The thermal zone has only one
cooling device bound to it. And the cooling device is backed
by i.MX6Q CPUFreq driver which can scale both the clock
frequency and voltage of CPU at different level to control
the thermal zone temperature. As CPUFreq lowers down the
temperature by reducing the system power consumption at

Nhot

Nmeas

Nroom

TEMP_CNT

Temperature 25°C Tmeas Thot

Thermal Zone

Thermal Sensor

Cooling Device 0

Governor Cooling Device N
…

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12D) 162-167 Zhou Lei, Guo Shengchao

165

the cost of performance, it’s clearly a passive cooling device.
Therefore, i.MX6Q thermal driver defines a passive trip
point at 85 Celsius degree as per the recommendation from
Freescale. The thermal zone governor in this model makes
decision on when and how to invoke cooling device for
temperature control. The sensor drive will report the on-chip
temperature back to the thermal zone governor in every 2
seconds by polling TEMPMON. Once the temperature
crosses the passive trip point, the governor will trigger the
cooling procedure by calling into cooling device. Besides of
the passive trip point, a critical trip point has to be defined,
so that the thermal core can react to it by powering off the
system immediately when the critical temperature is reached.
The critical trip point is defined at 105 Celsius degree
according to i.MX6Q data sheet [16]. As running a chip at
the critical temperature for even 2 seconds, i.e. the polling
period in this model, might be a dangerous thing, the thermal
driver chooses to implement the critical trip point with
interrupt. Thus, the cooling reaction to critical temperature
can be taken as soon as possible to avoid the chip being
damaged.

FIGURE 4 i.MX6Q thermal management model

As listed in Table 1, there are three CPU operating points
which have different level of thermal performance. Based
on that, the passive cooling device is implemented to
provide three different cooling states for thermal governor
to manipulate. When cooling device performs at the lowest
cooling state, CPU runs at the fastest operating point. When
cooling device performs at the highest cooling state, CPU
runs at the slowest operating point. The cooling device
driver maintains such mappings between cooling states and
CPU operating points by setting CPUFreq policy->max to
limit the maximum frequency that CPU can run at. Figure 5
illustrates a simplified flow chart of cooling procedure. In
each temperature measurement, the thermal governor
compares the current temperature Tcur with the passive trip
point temperature 85 Celsius degree. The cooling procedure
will be activated. It in turn determines whether the temperate
is rising or dropping by comparing Tcur and the last
measured temperature Tlast. If the temperature is rising, the
governor will apply the next higher cooling state, which
maps to the next slower CPU operating point. On the
contrary, if the temperature is dropping, the governor will

move the cooling state to the next lower level, which maps
to the next faster CPU operating point.

FIGURE 5 Cooling procedure flow chart

Although the policy of thermal management is
implemented in kernel space as a thermal zone governor, the
sysfs interface provided by Linux thermal infrastructural is
still quite useful for user space applications or tools to query
and configure the system thermal parameters. With this
i.MX6Q thermal implementation, after the thermal driver
successfully registers the thermal zone device and cooling
device to Linux thermal framework, folders
cooling_device0 and thermal_zone0 will be seen under
sysfs entry /sys/class/thermal. The information of the
cooling device like name and cooling state can be found in
folder cooling_device0, and thermal_zone0 folder contains
various configurations about the thermal zone device. The
most interesting entries in thermal_zone0 would be temp,
trip_point_0_temp and mode. The temp is a read-only entry
which reports the current temperature of the thermal zone,
while trip_point_0_temp can be read or written to get or set
the threshold temperature of the passive trip point. The
mode entry can be used to enable or disable the cooling
model at runtime. While changing the thermal
configurations by writing these sysfs entries is not suggested
to normal users, it’s quite useful for developers to debug and
test the thermal model.

4 Measurement and discussions

To verify whether the thermal model can work practically to
have the on-chip temperature under control, a comparison
test is created on i.MX6Q. The test is performed in the
following steps.

Power off the system if it’s running and wait for around
5 minutes to let i.MX6Q completely cool down.

Boot up the system and login the console.
Run command echo disabled >

/sys/class/thermal/thermal_zone0/mode to disable the
cooling model.

Launch a bash script which reports the temperature of

Interrupt Polling i.MX6Q

User Space

Kernel Space
Thermal Sysfs Interface

Governor

Cooling

Device 0

Sensor

Driver

TEMPMON

CPUFreq

Driver

Clock

CPUFreq

Policy

Voltage

No

No

No

Yes

Yes

Yes

Start

End

Tcur = get_temp()

Tlast = Tcur

Tcur >=

85

Tcur >

Tlast

Apply the next

lower cooling state Tcur <

Tlast

Apply the next

higher cooling state

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12D) 162-167 Zhou Lei, Guo Shengchao

166

i.MX6Q by looking at sysfs entry
/sys/class/thermal/thermal_zone0/temp in every 2 seconds
with an indefinite loop.

Wait a few minutes for the temperature to be stable.
Launch 4 instances of a simple console program which

does nothing but a busy loop to get all 4 CPU cores of
i.MX6Q fully loaded.

Monitor the reported temperatures and stop the test
script after the temperature reaches a relatively stable value.

In this test case, it typically takes about 2 minutes to see
the temperature rise to a relatively stable value. Authors
choose to record 64 samples which are collected in 128
seconds, and compose the trend line marked as Non-cooling
in Figure 6. To demonstrate the effectiveness of CPUFreq
cooling technology, other heat contributors of i.MX6Q are
not enabled in this test. That’s why the high temperature
with all CPU cores loaded only reaches around 60 Celsius
degree in this test. Since the passive trip point of the thermal
model is defined at 85 Celsius, the cooling device is not
trigger to work anyway. That said, the step 3 which disables
the cooling model is not really necessary for this test. It also
means that the trip point temperature needs to be lowered to
trigger the cooling device in this testing circumstance. So in
a comparison test to the first one, step 3 is replaced by the
command echo 50000 > trip_point_0_temp to set the
passive trip point temperature to 50 Celsius degree. (The
unit used in Linux thermal infrastructural is milli-celsius.)
The result is shown as the trend line marked as Cooling in
Figure 6. It’s quite clear that under the control of cooling
device, the temperature stops rising around 50 Celsius
degree and stays at that level all the way forward.

30

40

50

60

T
em

p
er

at
ur

e
(C

)

Time

Non-cooling Cooling

FIGURE 6 i.MX6Q temperature between non-cooling and cooling

Though the above comparison test proves that the
cooling device backed by CPUFreq can effectively manage
the thermal of i.MX6Q, there are a few future works to be
done in order to make the thermal model even better for
controlling the on-chip temperature of ARM SoCs. First of
all, the comparison test needs to be set up in a laboratory
which can provide a high temperature environment to
ensure the thermal model works as good as under room
temperature. In that case, the 85 Celsius trip point can be
verified with a real world temperature. Secondly, similar to
what’s been done on Intel Pentium platform in article [10],
some experiments should be set up on ARM SoCs to
identify the response timescale and influence of factors
beyond voltage and frequency on the chip temperature. Also,
for multi-core ARM SoCs, CPU hot-plug is another possible
cooling method used to implement CPU cooling device. It
would be interesting to benchmark the cooling efficiency
between CPUFreq and CPU hot-plug, so that a most
efficient thermal solution can be modelled. Last but not least,
besides CPU, modern ARM SoCs for mobile devices
typically integrate graphic processing unit and video
processing unit, which are both big heat contributors to the
on-chip temperature. In some particular use case, cooling
CPU only might be unable to keep SoC from reaching an
excessive temperature. So some additional cooling devices
may be needed to manage graphic and video processing
units together with CPU to keep the temperature of the
whole SoC within a safe range.

5 Conclusions

The thermal model proposed by the paper is implemented
and verified on Freescale i.MX6Q. The testing result
demonstrates it’s an effective dynamic thermal management
solution using DVFS technology. As thermal becomes a
major concern of high performance ARM SoCs today,
thermal sensor and DVFS support are universally available
on all the popular ARM chips like Samsung EXYNOS and
STE UX500. On the other hand, the thermal infrastructural
and CPUFreq subsystem in Linux Kernel provide a quite
generic interface to SoC specific thermal sensor and DVFS
drivers. Therefore, with some limited consolidation effort,
this i.MX6Q thermal model proposed by the paper can be
easily ported to those ARM SoCs, and therefore becomes a
generic thermal solution for ARM mobile application
processors.

References

[1] Hertl M, Weidmann D and Ngai A 2009 An advanced reliability

improvement and failure analysis approach to thermal stress issues in

IC packages 35th International Symposium for Testing and Failure

Analysis pp. 28–32

[2] Wang W, Reddy V, Vattikonda R, Krishnan S and Cao Y 2007

Compact modelling and simulation of circuit reliability for 65-nm

CMOS technology IEEE Transactions on Device and Materials

Reliability 7, 509–517

[3] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba 2013

Advanced Configuration and Power Interface Specification.

http://www.acpi.info/ 10 Sept 2014

[4] Brooks D and Martonosi M 2001 Dynamic thermal management for

high-performance microprocessors Proceedings of the 7th

International Symposium on High-Performance Computer

Architecture pp. 171 –182.

[5] Yang J, Zhou X, Chrobak M, Zhang Y and Jin L 2008 Dynamic

thermal management through task scheduling IEEE ISPASS pp. 191–

201.

[6] Yeo I, Liu C C and Kim E J 2008 Predictive dynamic thermal

management for multicore systems Proc. Design Automation Conf.

(DAC), ACM, pp. 734–739.

[7] Xia L, Zhu Y, Yang J, Ye J and Gu Z 2010 Implementing a thermal-

aware scheduler in linux kernel on a multi-core processor The

Computer Journal 53, 895–903.

[8] Liu G, Fan M and Quan G 2012 Neigbor-aware dynamic thermal

management for multi-core platform Proc. European Design and Test

Conf. (DATE), pp. 187–192.

[9] Huang W, Allen-Ware M, Carter J, Cheng E, Skadron K and Stan M

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12D) 162-167 Zhou Lei, Guo Shengchao

167

2011 Temperature-aware architecture: lessons and opportunities

Micro, IEEE 31, 82–86.

[10] Hanson H, Keckler S, Ghiasi S, Rajamani K, Rawson F and Rubio J

2007 Thermal response to DVFS: analysis with an Intel Pentium M

ACM/IEEE ISLPED, pp. 219–224.

[11] Mukherjee R and Memik O S 2006 Physical aware frequency selection

for dynamic thermal management in multi-core systems Proc. Int.

Conf. on Computer Aided Design (ICCAD), pp. 547–552.

[12] Herbert S and Marculescu D 2007 Analysis of dynamic

voltage/frequency scaling in chip-multiprocessors Proc. Int. Symp. on

Low Power Electronics and Design (ISLPED), pp. 38–43.

[13] Sujith T and Zhang R 2008 Thermal management in user space

Proceedings of the Linux Symposium, pp. 227–233.

[14] Wojciechowski B and Bawiec M A 2012 Practical dynamic thermal

management of multi-core microprocessors Thermal Investigations of

ICs and Systems (THERMINIC), pp. 1–4.

[15] Zhou L, Lv Q and Guo S 2013 A generic linux cpufreq driver for ARM

SoCs International Journal of Online Engineering (iJOE) 9, 29–32.

[16] Freescale Semiconductor 2014 i.MX 6Dual/6Quad Automotive and

Infotainment Applications Processors, Rev.3

Authors

Lei Zhou, Mar. 4, 1980, Changshu, Jiangsu, China

Current position, grades: Lecturer
University studies: Computer Science
Scientific interest: Power management on mobile devices
Publications: 3
Experience: Lei Zhou graduated from Soochow University with a master degree of Computer Science at 2005, and she has been staff
of Changshu Institute of Technology since then. The primary courses she teaches are C language programming and database
technology. She is proficient in software engineering and algorithm design, experienced in embedded system development and
database design with Microsoft Access and Oracle. Her main research areas include: embedded system, power management, and
information processing. There were one article about embedded system power management published on EI journals, and two
about information processing on Chinese core journals.

Shengchao Guo, Aug. 15, 1978, Zhenjiang, Jiangsu, China

Current position, grades: Senior software engineer
University studies: Computer Science
Scientific interest: Embedded system and device drivers
Publications: 1
Experience: Shengchao Guo graduated from Soochow University with a master of Computer Science at 2004. He had one year
working experience in Macronix (Suzhou) developing multimedia system on MIPS core. And he has been an employee of Freescale
Semiconductor since year 2005, developing board support package for i.MX application processors. His expertise include: ARM core
architecture, Linux device driver development, power management, and Freescale i.MX SoCs.

