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Abstract 

While the performance of modern ARM System on Chips (SoCs) increases significantly than the previous generation, the power dissipation 
and on-chip temperature becomes dramatically high. The existing thermal management solutions are mostly built on Advanced 
Configuration and Power Interface (ACPI) and Dynamic Thermal Management (DTM) model for traditional desktop and server machines. 
They do not directly apply on mobile ARM SoCs as it is. This paper proposes a solution for thermal management on high performance 
ARM SoCs based on a model which is built on some ACPI thermal concepts and DTM DVFS mechanism. The thermal model is 
implemented on Freescale i.MX6Q SoC with Linux Kernel 3.6. It uses a lot of help from Linux thermal infrastructural and CPUFreq 
subsystem, and builds a cooling device backed by CPUFreq driver. A comparison testing on i.MX6Q shows that the cooling device can 
effectively controls the on-chip temperature around a designed threshold value. The thermal model is built on generic thermal hardware 
support and common software infrastructural, and therefore should work universally for other ARM SoCs. 
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1 Introduction 
 
ARM System on Chips (SoCs) were initially designed for 
general embedded applications with low power dissipation 
being the principle, and thermal was never a practical 
concern in those days. However, the situation gets changed 
since modern ARM SoCs are widely adopted on mobile 
devices like smart phones and tablets. To provide a better 
user experience on these devices, the SoCs are designed 
with much higher processor frequency and more CPU cores. 
The consequence of such design is that the power 
dissipation is much higher, and much more heat gets 
generated than the prior generation ARM SoCs. The 
Freescale i.MX28 application processor is one typical early 
generation ARM SoC. It integrates an ARM9 core, and runs 
at 454MHz as maximum. In comparison, the i.MX6 Quad 
(i.MX6Q) produced by Freescale is a typical multi-core 
ARM SoC for mobile devices, which integrates 4 Cortext-
A9 cores and runs up to 996MHz. For given use case, 
i.MX6Q will obviously provide much higher performance 
than i.MX28. But as demonstrated in Figure 1, the on-die 
temperature of i.MX6Q increases dramatically faster and 
reaches a much higher degree than i.MX28 in a testing with 
CPU cores fully loaded. 

When other on-chip modules run together with the CPU 
cores under heavy load, modern high performance ARM 
SoCs like i.MX6Q can easily reach an even higher 
temperature than what Figure 1 illustrates. It’s well known 
that an excessively high on-chip temperature can result in 
performance degradation, poor reliability and signal 
integrity issues [1, 2]. In addition, the leakage power 
consumption increases exponentially with increasing chip 
temperature. Higher temperature results in greater power 
consumption, and this effect in turn increases the on-chip 
temperature even higher. More importantly, running chip at 
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high temperature will accelerate failure mechanisms, such 
as dielectric breakdown and electro-migration, which may 
result in a permanent damage to the chip. Hence there is 
really a need of thermal management to control temperature 
on these ARM SoCs. 
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FIGURE 1 Temperature comparison between i.MX28 and i.MX6Q 

This paper proposes a solution for thermal management 
on high performance ARM SoCs based on Linux Kernel 
thermal framework and CPUFreq support. The paper is 
organized as follows. Section 2 gives some background of 
thermal management topic, including ACPI, DTM and 
related works around thermal management on mobile 
device. Section 3 introduces the i.MX6Q thermal support at 
hardware level, and elaborates the design principles and 
implementation details of the thermal model, which is built 
on Linux ACPI thermal concepts and CPUFreq subsystem. 
Section 4 demonstrates the effectiveness of the thermal 
management model by running a comparison testing on 
i.MX6Q, and discusses the future works for making the 
model even more efficient for managing thermal on ARM 
SoCs. Finally, Section 5 concludes that the thermal model is 
built on common technology and generic frameworks, 
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therefore can universally work for other ARM SoCs besides 
Freescale i.MX6Q SoC. 

 
2 Background 
 
2.1 ADVANCED CONFIGURATION AND POWER 

INTERFACE 
 

The Advanced Configuration and Power Interface (ACPI) 
specification [3] was developed to provide a standardized 
approach to configuring the hardware, systems, and 
software necessary for power and thermal management. 
ACPI defines a set of points on the temperature scale that 
are referred to as cooling policies: active, passive and critical. 
These are the trip points where the various cooling methods 
might be triggered. As the CPU heats up and reaches the 
active threshold, a fan might be turned on to cool down the 
processor.  If temperature continues to increase and passive 
threshold is crossed, the system will need to reduce the 
processor’s clock frequency to decease power dissipation. 
Finally, if temperature continues to rise to the critical level 
that might cause damage to the CPU, power should be 
removed from all or part of the system. 

While this whole thermal management model works 
perfectly fine on desktop and server machines, the active 
policy doesn’t really fit into mobile devices. Considering the 
compact form factor of ARM based devices, cooling fan is 
not really an option there, apart from the facts that cooling 
fan requires additional power energy and generates noise. 
Except that, the passive and critical policies should work for 
ARM SoCs in general. 

 
2.2 DYNAMIC THERMAL MANAGEMENT 

 
Dynamic Thermal Management (DTM) refers to a range of 
possible software and hardware strategies which work 
dynamically to control a chip’s operating temperature at 
runtime [4]. The key goal of DTM is to provide inexpensive 
software or hardware responses to control the over-heating 
of the chip and maintain the chip temperature always below 
a critical temperature Tcritical. A trigger temperature 
Ttrigger which is generally lower than Tcritical is defined as 
the trip point, so that when the chip temperature reaches 
Ttrigger, DTM is invoked to cool down the chip. There are 
quit some DTM response mechanisms being researched and 
proposed, but two most typical and practical techniques are 
task scheduling and Dynamic Voltage and Frequency 
Scaling (DVFS). 

The general idea of task scheduling mechanism is 
migrating heavy loading task away from an over-heated 
core to a cooler core [5, 6, 7, 8]. While this technique might 
work well for other CPU architecture, it doesn’t practically 
work for ARM SoCs, because the existing ARM processors 
do not generally have a reliable way to report thermal state 
of individual core, but only the on-die temperature as a 
whole. Also, as temperature is a complex function of 
processor load and cannot really be easily predicted [8], for 
achieving a good cooling effect, the task migrating 
algorithms can be very complicated and difficult to 
implement. On the other hand, DVFS becomes a very 
effective mechanism for runtime thermal management, due 
to the quadratic dependence of dynamic power voltage [9, 

10, 11]. And more importantly, DVFS technique has been 
widely adopted by modern ARM SoCs designs to manage 
power dissipation [12], so it can be naturally employed to 
implement dynamic thermal management for ARM SoCs. 
 
2.3 RELATED WORKS 

 
There has been some attempt to extend Linux ACPI support 
designed for desktop and server machines to cover mobile 
devices [13]. But that work was still around Intel X86 
platforms, and relies on ACPI support from firmware to 
manage processor cooling state. The ACPI is not supported 
by ARM ecosystem at any level as of today. Also, that work 
focuses on managing thermal at platform level rather than 
processor itself, and requires a user application to make 
decisions on thermal policy control. Such design shifts the 
implementing burden and policy complexity to user applica-
tions, and adds the communication overhead between kernel 
and user spaces, which results in a less efficient solution 
than handling cooling policies in kernel space. There is also 
another work choosing to completely ignore the existing 
ACPI thermal support in Linux Kernel and manage thermal 
within CPUFreq subsystem [14]. It implements a new 
thermally-aware CPUFreq governor, which will directly 
measures temperature as well as performance status of all 
CPU cores and then select a CPUFreq level that would not 
lead to the excessive temperature. While the whole solution 
might work, it needs to build up every piece of thermal 
model from the ground and plug the code into CPUFreq 
subsystem, which makes less sense in terms of software 
reuse and will likely results in architectural issue if the code 
gets submitted to upstream kernel for inclusion. 

From the introductions on ACPI and DTM above, it can 
be seen that the DVFS based DTM provides a practical and 
effective response to trigger temperature Ttrigger, which 
can be well mapped to ACPI passive cooling policy and trip 
point. While DTM assumes that Tcritical should never be 
reached on a DTM based system, ACPI recommends remo-
ving power from system as the response to critical 
temperature, which also applies on ARM SoCs. Therefore, 
this paper proposes a thermal management solution for 
ARM SoCs, which is built on top of ACPI cooling concepts 
and DTM DVFS response mechanism. And Linux is chosen 
as the software environment to implement the proposal, 
because Linux Kernel has an existing thermal framework 
designed for ACPI thermal management on X86 CPUs. 
Though ARM SoCs do not support ACPI specification, 
quite a lot of thermal concepts and common code can be 
reused on ARM platforms. Also, the CPUFreq subsystem of 
Linux Kernel perfectly supports DVFS mechanism for 
ARM machines [15]. Using these fundamental infrastruc-
tural supports from Linux can make the implementation a 
lot easier and help authors to focus on the innovation part of 
the whole solution. 

 
3 Thermal Management on i.MX6Q 

 
3.1 I.MX6Q THERMAL SUPPORT 

 
The i.MX6Q application processor integrates a Temperature 
Monitor (TEMPMON), which implements a temperature 
senor function based on temperature dependent voltage to 
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time conversion. The module features an alarm function 
which can raise an interrupt if the temperature goes above a 
programmed threshold. Software can read the temperature 
sensor counter (TEMP_CNT) in conjunction with the fused 
calibration data to determine the on-die operational 
temperature. 

 

 
FIGURE 2 Temperature measurement on i.MX6Q 

Figure 2 shows the procedure of temperature measu-
rement on i.MX6Q. Nroom, Nhot and Thot are three values 
that will be read from chip fuse. Nroom and Nhot are 
TEMP_CNT values at room temperature 25°C and a hot 
temperature which is specified by Thot. All these three 
values are written into fuse bits based on the calibration 
during chip fabrication. With Nmeas read out from 
TEMP_CNT register, the temperature to be measured 
Tmeas then can be calculated using (1). 

 
25hot

meas hot meas hot
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Besides the temperature sensor, i.MX6Q supports 
changing core voltage VDDARM and clock frequency at 
runtime with DVFS technique, so that a Linux CPUFreq 
driver can be implemented based on that as a cooling device 
for thermal management. Table 1 lists the recommended 
DVFS operating points of i.MX6Q as well as the corres-
ponding power dissipation and temperatures measured 
under the condition that all CPU cores are fully loaded. The 
data clearly indicates that the i.MX6Q DVFS function can 
use effectively used to manage no-chip temperature. 

TABLE 1 i.MX6Q DVFS characteristics 

ARM Freqency 

(MHz) 

VDDARM 

(V) 

Power 

(mW) 

Temperature 

(°C) 

996 1.25 2080.50 59 

792 1.15 1647.75 51 

396 0.95 598.50 38 

 
3.2 LINUX KERNEL THERMAL MODEL 

 
The Linux thermal management model is built on the 
concept of thermal zone. As shown in Figure 3, a thermal 
zone, by definition, not only includes a sensor device 
reading temperature of the region that the thermal zone 
manages, but also a list of cooling devices associated with 
the thermal zone, which are used to bring down the 
temperature of the thermal zone under control of a governor. 

 

 
FIGURE 3 Thermal zone device model 

In a computer system with particular complexity, there 
might be multiple thermal sensors for different regions, like 
processor and motherboard. Multiple thermal zone devices 
will be created for such systems. In Linux Kernel thermal 
infrastructural, each thermal zone is represented by struct 
thermal_zone_device and registered by calling function 
thermal_zone_device_register(). And all registered thermal 
zone device is maintained on thermal_tz_list. Each thermal 
zone can have more than one cooling device to control 
temperature of the thermal zone. Cooling devices can be 
categorized into two types as per the cooling mode, active 
cooling and passive cooling. Active cooling increases the 
power consumption of the system, e.g. turning on a fan, to 
reduce the temperature. Passive cooling reduces the power 
consumption at the cost of system performance, e.g. 
throttling processor clock, to lower down the processor 
temperature. Each cooling device is registered by calling 
function thermal_cooling_device_register() and identified 
as a struct thermal_cooling_device in Linux thermal 
framework. And all registered cooling devices are collected 
on another list thermal_cdev_list. Function 
thermal_zone_bind_cooling_device() searches given 
thermal zone and cooling devices on thermal_tz_list and 
thermal_cdev_list, and associates these cooling devices with 
the thermal zone. Then under the control of a thermal 
governor, cooling devices will perform particular operations 
to react to the temperature change of the thermal zone. 
 
3.3 MANAGE I.MX6Q TEMPERATURE WITH LINUX 

THERMAL MODEL 
 

Same as the most ARM SoCs with thermal support today, 
i.MX6Q integrates one temperature sensor reporting on-die 
temperature of the SoC. So one thermal zone device is 
enough for the thermal model implementation on i.MX6Q. 
Also, unlike traditional X86 platforms that generally have 
multiple cooling devices for a single thermal zone, e.g. fan 
as an active cooling device and processor throttling as a 
passive cooling device, active cooling is not applicable for 
i.MX6Q. Based on these facts, a simplified thermal model 
as shows in Figure 4 is implemented on Linux for i.MX6Q 
system. 

There is one thermal zone driver which works as a 
sensor driver in this model. It can report the on-chip 
temperature by polling i.MX6Q TEMPMON block and also 
program TEMPMON to send interrupt when temperature 
reaches a threshold value. The thermal zone has only one 
cooling device bound to it. And the cooling device is backed 
by i.MX6Q CPUFreq driver which can scale both the clock 
frequency and voltage of CPU at different level to control 
the thermal zone temperature. As CPUFreq lowers down the 
temperature by reducing the system power consumption at 
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the cost of performance, it’s clearly a passive cooling device. 
Therefore, i.MX6Q thermal driver defines a passive trip 
point at 85 Celsius degree as per the recommendation from 
Freescale. The thermal zone governor in this model makes 
decision on when and how to invoke cooling device for 
temperature control. The sensor drive will report the on-chip 
temperature back to the thermal zone governor in every 2 
seconds by polling TEMPMON. Once the temperature 
crosses the passive trip point, the governor will trigger the 
cooling procedure by calling into cooling device. Besides of 
the passive trip point, a critical trip point has to be defined, 
so that the thermal core can react to it by powering off the 
system immediately when the critical temperature is reached. 
The critical trip point is defined at 105 Celsius degree 
according to i.MX6Q data sheet [16]. As running a chip at 
the critical temperature for even 2 seconds, i.e. the polling 
period in this model, might be a dangerous thing, the thermal 
driver chooses to implement the critical trip point with 
interrupt. Thus, the cooling reaction to critical temperature 
can be taken as soon as possible to avoid the chip being 
damaged. 

 

 
FIGURE 4 i.MX6Q thermal management model 

As listed in Table 1, there are three CPU operating points 
which have different level of thermal performance. Based 
on that, the passive cooling device is implemented to 
provide three different cooling states for thermal governor 
to manipulate. When cooling device performs at the lowest 
cooling state, CPU runs at the fastest operating point. When 
cooling device performs at the highest cooling state, CPU 
runs at the slowest operating point. The cooling device 
driver maintains such mappings between cooling states and 
CPU operating points by setting CPUFreq policy->max to 
limit the maximum frequency that CPU can run at. Figure 5 
illustrates a simplified flow chart of cooling procedure. In 
each temperature measurement, the thermal governor 
compares the current temperature Tcur with the passive trip 
point temperature 85 Celsius degree. The cooling procedure 
will be activated. It in turn determines whether the temperate 
is rising or dropping by comparing Tcur and the last 
measured temperature Tlast. If the temperature is rising, the 
governor will apply the next higher cooling state, which 
maps to the next slower CPU operating point. On the 
contrary, if the temperature is dropping, the governor will 

move the cooling state to the next lower level, which maps 
to the next faster CPU operating point. 

 

 

FIGURE 5 Cooling procedure flow chart 

Although the policy of thermal management is 
implemented in kernel space as a thermal zone governor, the 
sysfs interface provided by Linux thermal infrastructural is 
still quite useful for user space applications or tools to query 
and configure the system thermal parameters. With this 
i.MX6Q thermal implementation, after the thermal driver 
successfully registers the thermal zone device and cooling 
device to Linux thermal framework, folders 
cooling_device0 and thermal_zone0 will be seen under 
sysfs entry /sys/class/thermal. The information of the 
cooling device like name and cooling state can be found in 
folder cooling_device0, and thermal_zone0 folder contains 
various configurations about the thermal zone device. The 
most interesting entries in thermal_zone0 would be temp, 
trip_point_0_temp and mode. The temp is a read-only entry 
which reports the current temperature of the thermal zone, 
while trip_point_0_temp can be read or written to get or set 
the threshold temperature of the passive trip point. The 
mode entry can be used to enable or disable the cooling 
model at runtime. While changing the thermal 
configurations by writing these sysfs entries is not suggested 
to normal users, it’s quite useful for developers to debug and 
test the thermal model. 

 
4 Measurement and discussions 

 
To verify whether the thermal model can work practically to 
have the on-chip temperature under control, a comparison 
test is created on i.MX6Q. The test is performed in the 
following steps. 

Power off the system if it’s running and wait for around 
5 minutes to let i.MX6Q completely cool down. 

Boot up the system and login the console. 
Run command echo disabled > 

/sys/class/thermal/thermal_zone0/mode to disable the 
cooling model. 

Launch a bash script which reports the temperature of 
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i.MX6Q by looking at sysfs entry 
/sys/class/thermal/thermal_zone0/temp in every 2 seconds 
with an indefinite loop. 

Wait a few minutes for the temperature to be stable. 
Launch 4 instances of a simple console program which 

does nothing but a busy loop to get all 4 CPU cores of 
i.MX6Q fully loaded. 

Monitor the reported temperatures and stop the test 
script after the temperature reaches a relatively stable value. 

In this test case, it typically takes about 2 minutes to see 
the temperature rise to a relatively stable value. Authors 
choose to record 64 samples which are collected in 128 
seconds, and compose the trend line marked as Non-cooling 
in Figure 6. To demonstrate the effectiveness of CPUFreq 
cooling technology, other heat contributors of i.MX6Q are 
not enabled in this test. That’s why the high temperature 
with all CPU cores loaded only reaches around 60 Celsius 
degree in this test. Since the passive trip point of the thermal 
model is defined at 85 Celsius, the cooling device is not 
trigger to work anyway. That said, the step 3 which disables 
the cooling model is not really necessary for this test. It also 
means that the trip point temperature needs to be lowered to 
trigger the cooling device in this testing circumstance. So in 
a comparison test to the first one, step 3 is replaced by the 
command echo 50000 > trip_point_0_temp to set the 
passive trip point temperature to 50 Celsius degree. (The 
unit used in Linux thermal infrastructural is milli-celsius.) 
The result is shown as the trend line marked as Cooling in 
Figure 6. It’s quite clear that under the control of cooling 
device, the temperature stops rising around 50 Celsius 
degree and stays at that level all the way forward. 
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FIGURE 6 i.MX6Q temperature between non-cooling and cooling 

Though the above comparison test proves that the 
cooling device backed by CPUFreq can effectively manage 
the thermal of i.MX6Q, there are a few future works to be 
done in order to make the thermal model even better for 
controlling the on-chip temperature of ARM SoCs. First of 
all, the comparison test needs to be set up in a laboratory 
which can provide a high temperature environment to 
ensure the thermal model works as good as under room 
temperature. In that case, the 85 Celsius trip point can be 
verified with a real world temperature. Secondly, similar to 
what’s been done on Intel Pentium platform in article [10], 
some experiments should be set up on ARM SoCs to 
identify the response timescale and influence of factors 
beyond voltage and frequency on the chip temperature. Also, 
for multi-core ARM SoCs, CPU hot-plug is another possible 
cooling method used to implement CPU cooling device. It 
would be interesting to benchmark the cooling efficiency 
between CPUFreq and CPU hot-plug, so that a most 
efficient thermal solution can be modelled. Last but not least, 
besides CPU, modern ARM SoCs for mobile devices 
typically integrate graphic processing unit and video 
processing unit, which are both big heat contributors to the 
on-chip temperature. In some particular use case, cooling 
CPU only might be unable to keep SoC from reaching an 
excessive temperature. So some additional cooling devices 
may be needed to manage graphic and video processing 
units together with CPU to keep the temperature of the 
whole SoC within a safe range. 

 
5 Conclusions 

 
The thermal model proposed by the paper is implemented 
and verified on Freescale i.MX6Q. The testing result 
demonstrates it’s an effective dynamic thermal management 
solution using DVFS technology. As thermal becomes a 
major concern of high performance ARM SoCs today, 
thermal sensor and DVFS support are universally available 
on all the popular ARM chips like Samsung EXYNOS and 
STE UX500. On the other hand, the thermal infrastructural 
and CPUFreq subsystem in Linux Kernel provide a quite 
generic interface to SoC specific thermal sensor and DVFS 
drivers. Therefore, with some limited consolidation effort, 
this i.MX6Q thermal model proposed by the paper can be 
easily ported to those ARM SoCs, and therefore becomes a 
generic thermal solution for ARM mobile application 
processors. 
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