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Abstract 

In this paper, we make a comprehensive survey of many different methods to implement DXT1 (a widely used lossy texture 

compression algorithm). Besides that, we propose two new methods that aim for computing speed and image quality, respectively to 

implement DXT1 texture compression algorithm. For computing speed, we propose a new method called Lsq3d fit which achieves a 

very fast speed to encode texture images while keeping acceptable image quality. For image quality, we propose a new method called 

kmeans iteration fit and make a combination of it and the cluster fit from libsquish (an open source lib for DXTC). Kmeans iteration 

fit performs competitively in the quality of compressed texture images compared with the state-of-the-art DXT1 encoders, and we 

achieve different levels of quality by controlling the times of iteration. Finally, we test all the methods on Kodak Lossless True Color 

Image Suite, and CSIQ (Computational Perception and Image Quality Lab) image dataset. Our proposed methods have competitive 

results of speed and quality in both image datasets. The combination of cluster fit and kmeans iteration fit defeats all other methods 

in the quality of compressed images. 
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1 Introduction 

 

Textures play an important role in computer graphics. 

They are used to increase the realism of the rendered 

scenes by adding visual details to geometric models. 

However, textures can not only consume large amounts 

of system and video memory, but also take up a lot of 

bandwidth which usually limits the performance of 

modern rasterizer architectures for computer graphic 

system [1]. 

To solve these problems, Knittel et al. [2] and Beers 

et al. [3] proposed texture compression whose main idea 

is to conduct lossy compression on texture images, and 

store the compressed version of the textures. On one 

hand, as textures have been compressed before they are 

transferred to video memory by bus, we can save both 

bandwidth and memory. On the other hand, when 

accessing the compressed textures during rendering, the 

compressed textures should be decompressed on-the-fly 

in real time and support random access. Therefore texture 

compression is not the same as general image 

compression. It has its own properties to satisfy peculiar 

application requirements. We will introduce the main 

differences between texture compression and image 

compression in Section 2.1. Most of today’s graphics 

cards allow textures to be stored in a variety of 

compressed formats that are decompressed in real-time 

during rasterization [1]. One such format which is 

supported by most graphics cards is S3TC, also known as 

DXT compression [4, 5]. 

The family of DXT compression formats is made up 

of DXT1, DXT2, DXT3, DXT4 and DXT5. They are 

different in the way they handle the alpha channel. In this 

paper, we focus on DXT1 which is the base of other DXT 

formats. DXT1 [6] is simple, whose basic idea is to 

divide a texture image into many 4×4 pixel blocks and 

encode each block independently. Every encoded block is 

composed of two parts. The first part is used to store two 

16-bit RGB565 colours c0 and c1. The second part is used 

to store 16 2-bit colour indices. The structure of encoded 

DXT1 block is shown in Figure 1. If the first base colour 

c0 as a 16-bit unsigned integer is greater than c1, two 

other colours c2 and c3 are calculated as follows: c2 = (2c0 

+ c1)/3 and c3 = (c0 + 2c1)/3. Otherwise, c2 = (c0 + c1)/2 

and c3 is transparent black. The indices are used to 

determine the colour value for each pixel. The base 

colours c0 and c1 are the most important to determine the 

colour quality of each bock. How to choose two base 

colours that can best represent the 4×4 block has been the 

main focus of DXT1. 

In this paper, we make a comprehensive survey of 

many different encoding techniques conforming to the 

DXT1 texture compression standard, and test these 

methods on two widely used image datasets (CSIQ and 

Kodak). We also propose two new DXT1 texture 

encoding algorithms that aim for computing speed and 

image quality, respectively. Experimental results on 

Kodak image dataset and CSIQ image data set indicate 

that our methods have outstanding performance in speed 

or quality.  
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2 Related work 

 

This section introduces the main differences between 

general image compression and texture compression. 

 
FIGURE 1 The structure of DXT1 encoded block. The red part is two 

base colours and the blue part is each pixel’s colour indices to four 

colours c0, c1, c2 and c3 

 

2.1 GENERAL IMAGE COMPRESSION VS 

TEXTURE COMPRESSION 

 

Texture compression is a kind of special compression 

method which has its own properties to satisfy specific 

application requirements. Beers et al. [3] list four factors 

that should be considered when evaluating a texture 

compression scheme, as described below. 

Decoding speed: The accessing of texture data is a 

critical part in the texturing operations. So it is highly 

desirable to be able to render directly from the 

compressed texture data. The decoding algorithm of 

texture compression should be relatively simple to reduce 

the cost of hardware and should not impact rendering 

performance. 

Random access: As objects may be oriented and 

obscured arbitrarily, it is therefore difficult to predict the 

order that a renderer accesses texels. As such, any texture 

compression scheme must allow fast random access to 

compressed texture data.  

Encoding speed: In most applications that are related 

to textures, the majority of textures are compressed well 

in advance of the rendering, which we often call off-line 

encoding. It is therefore feasible to employ a scheme 

where the encoding is considerably slower than the 

decoding.  

Compression rate and visual quality: Because the 

most important issue in texturing is the quality of the 

rendered scene rather than the quality of individual 

textures themselves, some loss of fidelity in the 

compressed texture is more tolerable than image 

compression.  

From the above descriptions, we know that most 

general image compression schemes, e.g. JPEG, cannot 

support direct random access of pixel data within the 

compressed format because the per-pixel storage rate 

varies throughout. As such, many texture compression 

schemes we introduced later, which employ ‘fixed rate’ 

encoding. 

 

2.2 HISTORY OF DXTC 

 

In 1979, Delp and Mitchell [7] developed a simple 

scheme, called block truncation coding (BTC) for image 

compression. BTC compressed grey scale images in 

blocks of 4x4 pixels. For each block, two representative 

8-bit grey scale values are chosen and each pixel within 

the block is quantized to either of these two values. This 

resulted in 2 bits per pixel (2bpp). 

Campbell et al. [8] presented colour cell compression 

(CCC), which is often seen as a simple extension of BTC. 

CCC stores two colour indices to a palette in a 4x4 block 

instead of 2 grey scale values in BTC. By using a 256-

wide colour palette, the colours can be represented with 

eight bits each. Thus CCC can encode colour images at 2 

bpp. However, the limitation of only two colours in a 4x4 

block gives rise to banding artifacts and CCC requires a 

memory lookup in the palette. Knittel et al. [2] suggested 

that CCC be implemented in hardware and used in a 

texturing system. 

The S3TC texture compression method by Iourcha et 

al. [9] is a further adaption of the BTC/CCC method by 

improving colour data encoding. S3TC (a.k.a DXTC) is 

the de facto standard in texture compression method. 

Unlike CCC, it stores two base colours in R5G6B5 

format and a 2-bit index for each pixel in a 4x4 block. 

Each pixel can have four colours to choose, two base 

colours and two additional colours in-between the base 

colours. 

 

2.3 EXISTING IMPLEMENTATIONS OF DXT1 

ENCODER 

 

From the above descriptions, we know that all DXTC’s 

colours in a block lie on a line in colour space of RGB. 

To choose two base colours that can best represent all the 

colours of each block is the main work of DXTC encoder. 

There are several good DXT compressors available. Such 

as the ATI Compressonator [10] and the nVidia DXT 

Library [11], squish library [12], crunch lib [13], LSDxt 

DXT Compressor [14], Jason Dorie's image library: 

ImageLib, Mesa S3TC compression library: libtxc_dxtn 

[16] and so on.  

All the above encoders produce different levels of 

quality to DXT compressed texture images, and some of 

them are not open source. So it is very meaningful to give 

a comparative study on these different methods.  

It is known that texture compression does not require 

real-time encoding integral, but in some particular 

applications real-time compression is also important. A 

good DXT encoder should provide two different choices 

for users to choose. One is to compress a texture image 

very fast, while the quality of the texture can have more 

error tolerance. The other is to compress a texture with 

more time and produce high quality of DXT compressed 

texture images. 

 

 

http://lspiroengine.com/?p=516
http://lspiroengine.com/?p=516
http://homepage.hispeed.ch/rscheidegger/dri_experimental/s3tc_index.html
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3 Encoding approaches 

 

This section includes two parts. Part one introduces some 

encoding techniques in the open source squish lib. Part 

two describes two of our novel methods and a 

combination of cluster fit and kmeans iteration fit which 

has the best quality of all methods. 

 

3.1 METHODS OF SQUISH LIBRARY 

 

The squish library (abbreviated to libsquish) is an open 

source DXT compression library that was originally 

written by Simon Brown et al. Range fit and Cluster fit 

are based on a concept called principal component [15].  

 

3.1.1 Range fit 

 

For range fit method, it takes the minimum and maximum 

point along the principal axis as the endpoints directly. 

Although this method is quite simple and there may be 

better colour endpoints that are not part of the original 

point set, it can find the base colour points very fast and 

keep acceptable quality of compressed texture images. So 

range fit is a good choice for those applications that 

require very fast encoding speed, also known as real-time 

compression applications. 

 

3.1.2 Cluster fit 

 

Range fit takes endpoints from the original colour set, 

this is not the best choice in most cases. Cluster fit 

method is under the assumption that: If we assume that 

the principal axis is very similar to the direction of the 

line through optimal endpoints, we can also assume that a 

total ordering of the original colour set in these directions 

is also very similar. So cluster fit uses the principal axis 

to define a total ordering on the original colour set. It then 

tests all possible ways of clustering the original points 

that preserve this total ordering, and fit endpoints to each 

generated index set using least squares.  

The cluster fit algorithm in squish now forms the core 

DXT compression algorithm for the NVIDIA Texture 

Tools.  

 

3.2 OUR NOVEL METHODS AND COMBINATION 

METHOD 

 

In this section, we will present our novel methods in 

detail. 

 

3.2.1 Lsq3d fit 

 

It is known that the method of Least Squares is a 

procedure to determine the best fit line to data.  

Line fitting in computational mathematics often fits 

lines in 2D space with least square method. The fitted 

equation is y = ax + b. However, we want to fit lines in 

three-dimensional RGB space. We cannot use the linear 

least square method directly to determine the linear 

equation of 3D line. We refer to a math paper: Fitting of 

the Straight Line Equation in Space [17] to fit space line 

equation. Its base idea is to convert space line equation to 

plane line equation.  

With the space line, Lsq3d fit takes two endpoints that 

have the maximum span in the line. Unfortunately, 

sometimes space line cannot be represented by the above 

equations. We choose range fit to encode those 

corresponding blocks. This Lsq3d fit method is proposed 

for high computing efficiency. 

 

3.2.2 Kmeans iteration fit 

 

Kmeans iteration fit method is based on k-means 

clustering algorithm which aims to partition n 

observations into k clusters in which each observation 

belongs to the cluster with the nearest mean, serving as a 

prototype of the cluster. For each DXT block, we 

partition 16 colour points into 4 clusters firstly. Then we 

minimize Equation (1) that calculates the Euclidean 

distance between the DXT base colour points and cluster 

centre points. 

0 0 0 1 1 1

3
2

[j] 0

( , , , , , )

( [ ] [ ])i

i clusters j

f x y z x y z

w Observations i Centers j
 



 
, (1) 

where clusters is the result of kmeans clustering, Centers 

is the centre of each cluster, Observations is the cluster 

member of each cluster, and w is the weight of each 

cluster, it is calculated by clusters[i].number/16.0.  

To minimize f (x0, y0, z0, x1, y1, z1), we calculate its 

partial derivative of each parameter.  

Solving this linear equations, we can obtain values of 

x0, y0, z0, x1, y1 and z1, which are the coordinates of the 

DXT base colours.  

Kmeans iteration fit can iterate for a user-specified 

number of times. The c0(x0, y0, z0) and c1(x1, y1, z1) are the 

base values. We feed c0, c1, c2 and c3 as the unit points to 

the next round of kmeans clustering. c2 and c3 are the 

interpolated values of c0 and c1.  

With the initial points, we can get new cluster results 

and new values of x0, y0, z0, x1, y1 and z1. If the distance 

error between previous endpoints and current endpoints is 

less than a specified threshold then the algorithm is 

terminated; otherwise the iteration process continues until 

the distance error is smaller than the threshold or the 

number of iteration reaches the maximum iteration 

number. The definition of the distance error is shown in 

Equation (2): 

3
2

0

(curFitpoints[i] preFtipoints[i])
iDisError

MaxSpan








, (2) 

http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Prototype
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where curFitpoints[i] is the fitted results of this round and 

preFitpoints[i] is the results of previous round. MaxSpan 

is the longest distance of any two points in the block.  

Figure 2 presents the whole algorithm flow of kmeans 

iteration fit. 
Start

End

K-means clustering

DisError <= Threshold OR 

Iteration  number = Maximum 

number

Get coordinates of endpoints 

by minimize formula(9) 

initialization

Yes

No 

curFitpoints as initial points

 
FIGURE 2 The algorithm flow chart of kmeans iteration fit. 

Initialization specifies some parameters to execute k-means clustering 

 

3.2.3. Combination 

 

We observe many fitting results (as shown in Figure 3) of 

different encoding methods and find that our method can 

have a great fitting effectiveness when the colour set in a 

block has a fine linearity. In order to improve the 

encoding method, we propose a combination version. 

 
FIGURE 3 The fitting results of a block. Where the cyan stars represent 

the colour points, red triangles are fitting points of squish’s cluster fit, 

blue add symbols represent cluster centres and the green diamonds are 
the fitting results of our kmeans iteration fit 

For the combination method, we should make a 

judgment before we encode a block. If the colour points 

are of high linearity, then we choose kmeans iteration fit 

to encode. Else the colour points are encoded by cluster 

fit. We choose two factors to evaluate the linearity of 

colour points. One is the variance of the distances of 

cluster centres, and the other is the angle of centre lines. 

The specific formulas are shown in Equation (3): 

2

2

01 02 32 31

( [ ] [ ]) ,

( )
,

3

Max( , ),

ij

i j

Dis center j center i

Dis Dis
Variance

Dir Dir Dir Dir

 




  

 (3) 

where i = {0, 1, 2}, j = i + 1, Disij is the distance between 

center[i] and center[j]. Variance represents the variance 

of Dis01, Dis12 and Dis23. 

We specify the value of Variance and θ by a lot of 

experiments. The experimental results indicate that this 

combination method has the best quality of compressed 

texture images, that is to say this method yields the 

highest PSNR values and the smallest RmsError values. 

The flowchart of the combination method are shown 

in Figure 4. 

 

4 Datasets and quality evaluating metrics 

 

In this section, we introduce two most popular available 

image datasets that are used to test all DXT1 encoding 

methods. They are Kodak Image Dataset [18] and CSIQ 

(Computational Perception and Image Quality Lab) 

image dataset [19]. The quality evaluation metrics used in 

our experiment are introduced too. 
Start

End

K-means clustering

Initialization

Calculate variance and θ with centers 

Get Cluster centers

If variance <= 

Threshold1 AND θ <= 

Threshold2

Use cluster fit to encode Use kmeans iteration fit to encode

YesNo

 
FIGURE 4 The flowchart of combination method. Initialization 

specifies some parameters to execute k-means clustering 

Kodak Image Dataset [18] is released by the Kodak 

Corporation for unrestricted research usage. There are 

totally 25 uncompressed PNG true colour images of size 

768×512 pixels in it. CSIQ (Computational Perception 

and Image Quality Lab) image dataset [19] was released 

by Computational Perception and Image Quality Lab. It 

consists of 30 original PNG images and six different 

types of distortions at four to five different levels of 

distortion. We only use the original images in our 

experiment. All 30 original images are of size 512×512 

pixels and can be divided into five different types and 6 

images for each type. They are animals, landscape, 

people, plants and urban. 

In our experiment, we choose RmsError which is the 

square root of MSE (Mean Square Error) and PSNR (Peak 

signal-to-noise ratio) as quality evaluating metrics. 

PSNR is most commonly used to measure the quality 

of reconstruction of loss compression codecs (e.g., for 

image compression). The signal in this case is the original 

data, and the noise is the error introduced by 

compression. 

MSE is shown in Equation (4): 

http://en.wikipedia.org/wiki/Codec
http://en.wikipedia.org/wiki/Image_compression
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      , (4) 

where I is the original texture image and C is the 

compressed texture image. m is the width of the image 

and n is the height of the image. As we will evaluate the 

quality of RGB image, we should consider RGB three 

channels.  

PSNR is calculated with Equation (5), where max is 

255: 

2

10

MAX
10log IPSNR

MSE

 
  

 
. (5) 

 

5 Experimental results 

 

In this section, we use Kodak Image Dataset [18] and 

CSIQ dataset [19] to test all the DXT1 encoders we can 

find. We present the experimental results with tables and 

line charts.  

Firstly, we will introduce the running environment of 

our experiment. All the programs run on Microsoft 

Visual Studio 2008 professional version. The computer 

used to conduct experiment is DELL OptiPlex 7010, its 

CPU is Intel® Core™ i5-3470 @3.20GHz, its Operation 

System is Windows 7 Ultimate Edition and its RAM is 

4.00 GB.  

Then, we present parameter settings of our own 

methods. For kmeans iteration fit, we set the DisError 

equal to 0.001. To balance the quality and speed, we set 

iteration times to be five. The result of kmeans iteration 

fit without iteration is also given to make a comparison. 

For combination method, the variance threshold is 1.0 

and the cosθ threshold is 0.86. We determine these values 

by a lot of experiments and choose thresholds that have 

the best effects. 

The numerical experimental results can be seen in 

Table 1. We measure rmsError, PSNR(db) and running 

time(second) for each image dataset, all these values are 

average values of corresponding datasets. For each 

numerical term, the left column is the results of Kodak 

dataset and the right column is CSIQ’s results. As some 

methods only offer software or executable files, we 

cannot measure the running time accurately as we do in 

methods that have source code and the Compressonator 

of AMD [10] in quality no matter how many times it 

iterates. The combination methods (marked in blue) can 

have the best quality of all methods, but it needs longer 

time to encode. Improving the speed of this combination 

method is one of our future works. 

 

TABLE 1 Experimental Results of all the methods on the two image datasets. “Can’t measure accurately” means that we have to make compression 

operations interactively, so the total time used to compress is not accurate. The red row is Lsq3d fit, which is the fastest method to encode, while the 
quality is still acceptable and defeat range fit both in time and quality. The blue row is the combination method, which has the best quality of all 

methods 

Methods 
Kodak CSIQ Kodak CSIQ Kodak CSIQ 

Mean RmsError Mean PSNR(db) Running time(second) 

Range fit 9.615789 11.991445 33.47758 31.713790 1.457000 1.215000 
Lsq3d fit(Range fit for blocks can’t express line) 8.994410 11.723098 34.057239 32.018587 0.747000 0.650000 

Cluster fit + single color fit 6.982464 8.799585 36.26763 34.383929 201.629000 167.624000 

LSDxt Engine by L. Spiro 7.621329 9.577089 35.51408 33.662967 
Can’t measure 

accurately 
Can’t measure 

accurately 

AMD: The Compressonator 7.006528 8.860144 36.230736 34.312864 
Can’t measure 

accurately 

Can’t measure 

accurately 

Crunch lib quality=0 19.036631 22.901982 27.683062 26.243883 
Can’t measure 

accurately 

Can’t measure 

accurately 

Crunch lib quality=255 6.976277 8.866489 36.275241 34.317618 
Can’t measure 

accurately 
Can’t measure 

accurately 

Kmeans iteration0 fit 7.673874 9.305032 35.414205 33.866736 23.667000 19.702000 

Kmeans iteration5 fit 7.352763 9.110025 35.764885 34.049590 65.608000 54.208000 
Combination(cluster fit and kmeans iteration fit) 6.855624 8.619251 36.431254 34.556220 235.573000 197.196000 

Table 1 shows that Lsq3d fit (marked in red) can 

defeat range fit both in speed and quality. Kmeans 

iteration fit can have competitive performance compared 

with other methods, but it cannot be better than cluster fit. 

In order to give a better visualization of all the methods’ 

compression performance on every texture image, we 

present two line charts for Kodak [18] and CSIQ [19] 

respectively as shown in Figures 5 and 6.  

 
FIGURE 5 The line chart of Kodak dataset. X axis represents image 

names and Y axis represents the PSNR(db) value of each image 

 
FIGURE 6. The line chart of CSIQ dataset. X axis represents image 

names and Y axis represents the PSNR(db) value of each image 

http://lspiroengine.com/?author=1
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In these two line charts, we present 9 different 

methods’s PSNR values on each image. The 

corresponding methods are shown in the legend of the 

figure. The square symbols represent fast compression 

methods and the diamond symbols represent the high 

quality methods. To make it clearer, we use different 

colours for different methods. The line charts indicate 

that the combination method has the highest PSNR 

values for most images. 

 

6 Conclusion and future work 
 

DXTC has been a leading texture compression method 

for many years and is still widely used today. 

Correspondingly, many people focus on the 

implementation of DXT1 encoder. In this paper, we 

make a comparative study on all the encoders we can 

find and test them on two image datasets. Besides that, 

we propose our own method Lsq3d fit and k-means 

iteration fit aiming at speed and quality, respectively. 

The combination of our k-means iteration fit and cluster 

fit outperforms all the other methods in quality of 

compressed texture images.  

We will extend our work to alpha channel encoding 

in the future. For textures with alpha channel, DXTC 

uses the same idea as for colour channels to encode alpha 

values. The most important thing is also to find the alpha 

endpoints that can best represent the original 4 x 4 block.  

New encoding method should be designed specifically 

for alpha channel in the future. 
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