

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 110-115 Ye Jizhen, Wei Jian, Huang Yan, Peng Jingliang

110
Computer and Information Technologies

Comparative study of DXT1 texture encoding techniques

Jizhen Ye1, Jian Wei2, Yan Huang1*, Jingliang Peng1

1School of Computer Science and Technology, Shandong University, Jinan, China

2Qualcomm Inc., San Diego, U.S.A.

Received 1 March 2014, www.tsi.lv

Abstract

In this paper, we make a comprehensive survey of many different methods to implement DXT1 (a widely used lossy texture

compression algorithm). Besides that, we propose two new methods that aim for computing speed and image quality, respectively to

implement DXT1 texture compression algorithm. For computing speed, we propose a new method called Lsq3d fit which achieves a

very fast speed to encode texture images while keeping acceptable image quality. For image quality, we propose a new method called

kmeans iteration fit and make a combination of it and the cluster fit from libsquish (an open source lib for DXTC). Kmeans iteration

fit performs competitively in the quality of compressed texture images compared with the state-of-the-art DXT1 encoders, and we

achieve different levels of quality by controlling the times of iteration. Finally, we test all the methods on Kodak Lossless True Color

Image Suite, and CSIQ (Computational Perception and Image Quality Lab) image dataset. Our proposed methods have competitive

results of speed and quality in both image datasets. The combination of cluster fit and kmeans iteration fit defeats all other methods

in the quality of compressed images.

Keywords: Texture compression, DXTC, DXT1, S3TC, k-means clustering

* Corresponding author e-mail: yan.h@sdu.edu.cn

1 Introduction

Textures play an important role in computer graphics.

They are used to increase the realism of the rendered

scenes by adding visual details to geometric models.

However, textures can not only consume large amounts

of system and video memory, but also take up a lot of

bandwidth which usually limits the performance of

modern rasterizer architectures for computer graphic

system [1].

To solve these problems, Knittel et al. [2] and Beers

et al. [3] proposed texture compression whose main idea

is to conduct lossy compression on texture images, and

store the compressed version of the textures. On one

hand, as textures have been compressed before they are

transferred to video memory by bus, we can save both

bandwidth and memory. On the other hand, when

accessing the compressed textures during rendering, the

compressed textures should be decompressed on-the-fly

in real time and support random access. Therefore texture

compression is not the same as general image

compression. It has its own properties to satisfy peculiar

application requirements. We will introduce the main

differences between texture compression and image

compression in Section 2.1. Most of today’s graphics

cards allow textures to be stored in a variety of

compressed formats that are decompressed in real-time

during rasterization [1]. One such format which is

supported by most graphics cards is S3TC, also known as

DXT compression [4, 5].

The family of DXT compression formats is made up

of DXT1, DXT2, DXT3, DXT4 and DXT5. They are

different in the way they handle the alpha channel. In this

paper, we focus on DXT1 which is the base of other DXT

formats. DXT1 [6] is simple, whose basic idea is to

divide a texture image into many 4×4 pixel blocks and

encode each block independently. Every encoded block is

composed of two parts. The first part is used to store two

16-bit RGB565 colours c0 and c1. The second part is used

to store 16 2-bit colour indices. The structure of encoded

DXT1 block is shown in Figure 1. If the first base colour

c0 as a 16-bit unsigned integer is greater than c1, two

other colours c2 and c3 are calculated as follows: c2 = (2c0

+ c1)/3 and c3 = (c0 + 2c1)/3. Otherwise, c2 = (c0 + c1)/2

and c3 is transparent black. The indices are used to

determine the colour value for each pixel. The base

colours c0 and c1 are the most important to determine the

colour quality of each bock. How to choose two base

colours that can best represent the 4×4 block has been the

main focus of DXT1.

In this paper, we make a comprehensive survey of

many different encoding techniques conforming to the

DXT1 texture compression standard, and test these

methods on two widely used image datasets (CSIQ and

Kodak). We also propose two new DXT1 texture

encoding algorithms that aim for computing speed and

image quality, respectively. Experimental results on

Kodak image dataset and CSIQ image data set indicate

that our methods have outstanding performance in speed

or quality.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 110-115 Ye Jizhen, Wei Jian, Huang Yan, Peng Jingliang

111
Computer and Information Technologies

2 Related work

This section introduces the main differences between

general image compression and texture compression.

FIGURE 1 The structure of DXT1 encoded block. The red part is two

base colours and the blue part is each pixel’s colour indices to four

colours c0, c1, c2 and c3

2.1 GENERAL IMAGE COMPRESSION VS

TEXTURE COMPRESSION

Texture compression is a kind of special compression

method which has its own properties to satisfy specific

application requirements. Beers et al. [3] list four factors

that should be considered when evaluating a texture

compression scheme, as described below.

Decoding speed: The accessing of texture data is a

critical part in the texturing operations. So it is highly

desirable to be able to render directly from the

compressed texture data. The decoding algorithm of

texture compression should be relatively simple to reduce

the cost of hardware and should not impact rendering

performance.

Random access: As objects may be oriented and

obscured arbitrarily, it is therefore difficult to predict the

order that a renderer accesses texels. As such, any texture

compression scheme must allow fast random access to

compressed texture data.

Encoding speed: In most applications that are related

to textures, the majority of textures are compressed well

in advance of the rendering, which we often call off-line

encoding. It is therefore feasible to employ a scheme

where the encoding is considerably slower than the

decoding.

Compression rate and visual quality: Because the

most important issue in texturing is the quality of the

rendered scene rather than the quality of individual

textures themselves, some loss of fidelity in the

compressed texture is more tolerable than image

compression.

From the above descriptions, we know that most

general image compression schemes, e.g. JPEG, cannot

support direct random access of pixel data within the

compressed format because the per-pixel storage rate

varies throughout. As such, many texture compression

schemes we introduced later, which employ ‘fixed rate’

encoding.

2.2 HISTORY OF DXTC

In 1979, Delp and Mitchell [7] developed a simple

scheme, called block truncation coding (BTC) for image

compression. BTC compressed grey scale images in

blocks of 4x4 pixels. For each block, two representative

8-bit grey scale values are chosen and each pixel within

the block is quantized to either of these two values. This

resulted in 2 bits per pixel (2bpp).

Campbell et al. [8] presented colour cell compression

(CCC), which is often seen as a simple extension of BTC.

CCC stores two colour indices to a palette in a 4x4 block

instead of 2 grey scale values in BTC. By using a 256-

wide colour palette, the colours can be represented with

eight bits each. Thus CCC can encode colour images at 2

bpp. However, the limitation of only two colours in a 4x4

block gives rise to banding artifacts and CCC requires a

memory lookup in the palette. Knittel et al. [2] suggested

that CCC be implemented in hardware and used in a

texturing system.

The S3TC texture compression method by Iourcha et

al. [9] is a further adaption of the BTC/CCC method by

improving colour data encoding. S3TC (a.k.a DXTC) is

the de facto standard in texture compression method.

Unlike CCC, it stores two base colours in R5G6B5

format and a 2-bit index for each pixel in a 4x4 block.

Each pixel can have four colours to choose, two base

colours and two additional colours in-between the base

colours.

2.3 EXISTING IMPLEMENTATIONS OF DXT1

ENCODER

From the above descriptions, we know that all DXTC’s

colours in a block lie on a line in colour space of RGB.

To choose two base colours that can best represent all the

colours of each block is the main work of DXTC encoder.

There are several good DXT compressors available. Such

as the ATI Compressonator [10] and the nVidia DXT

Library [11], squish library [12], crunch lib [13], LSDxt

DXT Compressor [14], Jason Dorie's image library:

ImageLib, Mesa S3TC compression library: libtxc_dxtn

[16] and so on.

All the above encoders produce different levels of

quality to DXT compressed texture images, and some of

them are not open source. So it is very meaningful to give

a comparative study on these different methods.

It is known that texture compression does not require

real-time encoding integral, but in some particular

applications real-time compression is also important. A

good DXT encoder should provide two different choices

for users to choose. One is to compress a texture image

very fast, while the quality of the texture can have more

error tolerance. The other is to compress a texture with

more time and produce high quality of DXT compressed

texture images.

http://lspiroengine.com/?p=516
http://lspiroengine.com/?p=516
http://homepage.hispeed.ch/rscheidegger/dri_experimental/s3tc_index.html

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 110-115 Ye Jizhen, Wei Jian, Huang Yan, Peng Jingliang

112
Computer and Information Technologies

3 Encoding approaches

This section includes two parts. Part one introduces some

encoding techniques in the open source squish lib. Part

two describes two of our novel methods and a

combination of cluster fit and kmeans iteration fit which

has the best quality of all methods.

3.1 METHODS OF SQUISH LIBRARY

The squish library (abbreviated to libsquish) is an open

source DXT compression library that was originally

written by Simon Brown et al. Range fit and Cluster fit

are based on a concept called principal component [15].

3.1.1 Range fit

For range fit method, it takes the minimum and maximum

point along the principal axis as the endpoints directly.

Although this method is quite simple and there may be

better colour endpoints that are not part of the original

point set, it can find the base colour points very fast and

keep acceptable quality of compressed texture images. So

range fit is a good choice for those applications that

require very fast encoding speed, also known as real-time

compression applications.

3.1.2 Cluster fit

Range fit takes endpoints from the original colour set,

this is not the best choice in most cases. Cluster fit

method is under the assumption that: If we assume that

the principal axis is very similar to the direction of the

line through optimal endpoints, we can also assume that a

total ordering of the original colour set in these directions

is also very similar. So cluster fit uses the principal axis

to define a total ordering on the original colour set. It then

tests all possible ways of clustering the original points

that preserve this total ordering, and fit endpoints to each

generated index set using least squares.

The cluster fit algorithm in squish now forms the core

DXT compression algorithm for the NVIDIA Texture

Tools.

3.2 OUR NOVEL METHODS AND COMBINATION

METHOD

In this section, we will present our novel methods in

detail.

3.2.1 Lsq3d fit

It is known that the method of Least Squares is a

procedure to determine the best fit line to data.

Line fitting in computational mathematics often fits

lines in 2D space with least square method. The fitted

equation is y = ax + b. However, we want to fit lines in

three-dimensional RGB space. We cannot use the linear

least square method directly to determine the linear

equation of 3D line. We refer to a math paper: Fitting of

the Straight Line Equation in Space [17] to fit space line

equation. Its base idea is to convert space line equation to

plane line equation.

With the space line, Lsq3d fit takes two endpoints that

have the maximum span in the line. Unfortunately,

sometimes space line cannot be represented by the above

equations. We choose range fit to encode those

corresponding blocks. This Lsq3d fit method is proposed

for high computing efficiency.

3.2.2 Kmeans iteration fit

Kmeans iteration fit method is based on k-means

clustering algorithm which aims to partition n

observations into k clusters in which each observation

belongs to the cluster with the nearest mean, serving as a

prototype of the cluster. For each DXT block, we

partition 16 colour points into 4 clusters firstly. Then we

minimize Equation (1) that calculates the Euclidean

distance between the DXT base colour points and cluster

centre points.

0 0 0 1 1 1

3
2

[j] 0

(, , , , ,)

([] [])i

i clusters j

f x y z x y z

w Observations i Centers j

, (1)

where clusters is the result of kmeans clustering, Centers

is the centre of each cluster, Observations is the cluster

member of each cluster, and w is the weight of each

cluster, it is calculated by clusters[i].number/16.0.

To minimize f (x0, y0, z0, x1, y1, z1), we calculate its

partial derivative of each parameter.

Solving this linear equations, we can obtain values of

x0, y0, z0, x1, y1 and z1, which are the coordinates of the

DXT base colours.

Kmeans iteration fit can iterate for a user-specified

number of times. The c0(x0, y0, z0) and c1(x1, y1, z1) are the

base values. We feed c0, c1, c2 and c3 as the unit points to

the next round of kmeans clustering. c2 and c3 are the

interpolated values of c0 and c1.

With the initial points, we can get new cluster results

and new values of x0, y0, z0, x1, y1 and z1. If the distance

error between previous endpoints and current endpoints is

less than a specified threshold then the algorithm is

terminated; otherwise the iteration process continues until

the distance error is smaller than the threshold or the

number of iteration reaches the maximum iteration

number. The definition of the distance error is shown in

Equation (2):

3
2

0

(curFitpoints[i] preFtipoints[i])
iDisError

MaxSpan

, (2)

http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Prototype

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 110-115 Ye Jizhen, Wei Jian, Huang Yan, Peng Jingliang

113
Computer and Information Technologies

where curFitpoints[i] is the fitted results of this round and

preFitpoints[i] is the results of previous round. MaxSpan

is the longest distance of any two points in the block.

Figure 2 presents the whole algorithm flow of kmeans

iteration fit.
Start

End

K-means clustering

DisError <= Threshold OR

Iteration number = Maximum

number

Get coordinates of endpoints

by minimize formula(9)

initialization

Yes

No

curFitpoints as initial points

FIGURE 2 The algorithm flow chart of kmeans iteration fit.

Initialization specifies some parameters to execute k-means clustering

3.2.3. Combination

We observe many fitting results (as shown in Figure 3) of

different encoding methods and find that our method can

have a great fitting effectiveness when the colour set in a

block has a fine linearity. In order to improve the

encoding method, we propose a combination version.

FIGURE 3 The fitting results of a block. Where the cyan stars represent

the colour points, red triangles are fitting points of squish’s cluster fit,

blue add symbols represent cluster centres and the green diamonds are
the fitting results of our kmeans iteration fit

For the combination method, we should make a

judgment before we encode a block. If the colour points

are of high linearity, then we choose kmeans iteration fit

to encode. Else the colour points are encoded by cluster

fit. We choose two factors to evaluate the linearity of

colour points. One is the variance of the distances of

cluster centres, and the other is the angle of centre lines.

The specific formulas are shown in Equation (3):

2

2

01 02 32 31

([] []) ,

()
,

3

Max(,),

ij

i j

Dis center j center i

Dis Dis
Variance

Dir Dir Dir Dir

 (3)

where i = {0, 1, 2}, j = i + 1, Disij is the distance between

center[i] and center[j]. Variance represents the variance

of Dis01, Dis12 and Dis23.

We specify the value of Variance and θ by a lot of

experiments. The experimental results indicate that this

combination method has the best quality of compressed

texture images, that is to say this method yields the

highest PSNR values and the smallest RmsError values.

The flowchart of the combination method are shown

in Figure 4.

4 Datasets and quality evaluating metrics

In this section, we introduce two most popular available

image datasets that are used to test all DXT1 encoding

methods. They are Kodak Image Dataset [18] and CSIQ

(Computational Perception and Image Quality Lab)

image dataset [19]. The quality evaluation metrics used in

our experiment are introduced too.
Start

End

K-means clustering

Initialization

Calculate variance and θ with centers

Get Cluster centers

If variance <=

Threshold1 AND θ <=

Threshold2

Use cluster fit to encode Use kmeans iteration fit to encode

YesNo

FIGURE 4 The flowchart of combination method. Initialization

specifies some parameters to execute k-means clustering

Kodak Image Dataset [18] is released by the Kodak

Corporation for unrestricted research usage. There are

totally 25 uncompressed PNG true colour images of size

768×512 pixels in it. CSIQ (Computational Perception

and Image Quality Lab) image dataset [19] was released

by Computational Perception and Image Quality Lab. It

consists of 30 original PNG images and six different

types of distortions at four to five different levels of

distortion. We only use the original images in our

experiment. All 30 original images are of size 512×512

pixels and can be divided into five different types and 6

images for each type. They are animals, landscape,

people, plants and urban.

In our experiment, we choose RmsError which is the

square root of MSE (Mean Square Error) and PSNR (Peak

signal-to-noise ratio) as quality evaluating metrics.

PSNR is most commonly used to measure the quality

of reconstruction of loss compression codecs (e.g., for

image compression). The signal in this case is the original

data, and the noise is the error introduced by

compression.

MSE is shown in Equation (4):

http://en.wikipedia.org/wiki/Codec
http://en.wikipedia.org/wiki/Image_compression

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 110-115 Ye Jizhen, Wei Jian, Huang Yan, Peng Jingliang

114
Computer and Information Technologies

1 1
2 2 2

(,) (,) (,) (,) (,) (,)

0 0

1 1
[R] [] [B]

3

m n

I i j C i j I i j C i j I i j C i j

i j

MSE R G G B
mn

 , (4)

where I is the original texture image and C is the

compressed texture image. m is the width of the image

and n is the height of the image. As we will evaluate the

quality of RGB image, we should consider RGB three

channels.

PSNR is calculated with Equation (5), where max is

255:

2

10

MAX
10log IPSNR

MSE

. (5)

5 Experimental results

In this section, we use Kodak Image Dataset [18] and

CSIQ dataset [19] to test all the DXT1 encoders we can

find. We present the experimental results with tables and

line charts.

Firstly, we will introduce the running environment of

our experiment. All the programs run on Microsoft

Visual Studio 2008 professional version. The computer

used to conduct experiment is DELL OptiPlex 7010, its

CPU is Intel® Core™ i5-3470 @3.20GHz, its Operation

System is Windows 7 Ultimate Edition and its RAM is

4.00 GB.

Then, we present parameter settings of our own

methods. For kmeans iteration fit, we set the DisError

equal to 0.001. To balance the quality and speed, we set

iteration times to be five. The result of kmeans iteration

fit without iteration is also given to make a comparison.

For combination method, the variance threshold is 1.0

and the cosθ threshold is 0.86. We determine these values

by a lot of experiments and choose thresholds that have

the best effects.

The numerical experimental results can be seen in

Table 1. We measure rmsError, PSNR(db) and running

time(second) for each image dataset, all these values are

average values of corresponding datasets. For each

numerical term, the left column is the results of Kodak

dataset and the right column is CSIQ’s results. As some

methods only offer software or executable files, we

cannot measure the running time accurately as we do in

methods that have source code and the Compressonator

of AMD [10] in quality no matter how many times it

iterates. The combination methods (marked in blue) can

have the best quality of all methods, but it needs longer

time to encode. Improving the speed of this combination

method is one of our future works.

TABLE 1 Experimental Results of all the methods on the two image datasets. “Can’t measure accurately” means that we have to make compression

operations interactively, so the total time used to compress is not accurate. The red row is Lsq3d fit, which is the fastest method to encode, while the
quality is still acceptable and defeat range fit both in time and quality. The blue row is the combination method, which has the best quality of all

methods

Methods
Kodak CSIQ Kodak CSIQ Kodak CSIQ

Mean RmsError Mean PSNR(db) Running time(second)

Range fit 9.615789 11.991445 33.47758 31.713790 1.457000 1.215000
Lsq3d fit(Range fit for blocks can’t express line) 8.994410 11.723098 34.057239 32.018587 0.747000 0.650000

Cluster fit + single color fit 6.982464 8.799585 36.26763 34.383929 201.629000 167.624000

LSDxt Engine by L. Spiro 7.621329 9.577089 35.51408 33.662967
Can’t measure

accurately
Can’t measure

accurately

AMD: The Compressonator 7.006528 8.860144 36.230736 34.312864
Can’t measure

accurately

Can’t measure

accurately

Crunch lib quality=0 19.036631 22.901982 27.683062 26.243883
Can’t measure

accurately

Can’t measure

accurately

Crunch lib quality=255 6.976277 8.866489 36.275241 34.317618
Can’t measure

accurately
Can’t measure

accurately

Kmeans iteration0 fit 7.673874 9.305032 35.414205 33.866736 23.667000 19.702000

Kmeans iteration5 fit 7.352763 9.110025 35.764885 34.049590 65.608000 54.208000
Combination(cluster fit and kmeans iteration fit) 6.855624 8.619251 36.431254 34.556220 235.573000 197.196000

Table 1 shows that Lsq3d fit (marked in red) can

defeat range fit both in speed and quality. Kmeans

iteration fit can have competitive performance compared

with other methods, but it cannot be better than cluster fit.

In order to give a better visualization of all the methods’

compression performance on every texture image, we

present two line charts for Kodak [18] and CSIQ [19]

respectively as shown in Figures 5 and 6.

FIGURE 5 The line chart of Kodak dataset. X axis represents image

names and Y axis represents the PSNR(db) value of each image

FIGURE 6. The line chart of CSIQ dataset. X axis represents image

names and Y axis represents the PSNR(db) value of each image

http://lspiroengine.com/?author=1

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 110-115 Ye Jizhen, Wei Jian, Huang Yan, Peng Jingliang

115
Computer and Information Technologies

In these two line charts, we present 9 different

methods’s PSNR values on each image. The

corresponding methods are shown in the legend of the

figure. The square symbols represent fast compression

methods and the diamond symbols represent the high

quality methods. To make it clearer, we use different

colours for different methods. The line charts indicate

that the combination method has the highest PSNR

values for most images.

6 Conclusion and future work

DXTC has been a leading texture compression method

for many years and is still widely used today.

Correspondingly, many people focus on the

implementation of DXT1 encoder. In this paper, we

make a comparative study on all the encoders we can

find and test them on two image datasets. Besides that,

we propose our own method Lsq3d fit and k-means

iteration fit aiming at speed and quality, respectively.

The combination of our k-means iteration fit and cluster

fit outperforms all the other methods in quality of

compressed texture images.

We will extend our work to alpha channel encoding

in the future. For textures with alpha channel, DXTC

uses the same idea as for colour channels to encode alpha

values. The most important thing is also to find the alpha

endpoints that can best represent the original 4 x 4 block.

New encoding method should be designed specifically

for alpha channel in the future.

Acknowledgment

We thank Qualcomm Inc. for funding this project. We

also thank Simon Brown who has written the squish lib

and shared the source code.

References

[1] Aila T, Miettinen V, Nordlund P 2003 Delay Streams for Graphics
Hardware ACM Transactions on Graphics, 22(3) 792–800

[2] Knittel G, Schilling A, Kugler A, Strasser W 1996 Hardware for

Superior Texture Performance Computers & Graphics 20(4) July
475–81

[3] Beers A, Agrawala M, Chadda N 1996 Rendering from

Compressed Textures Proceedings of SIGGRAPH 373–8
[4] S3 Texture Compression Pat Brown NVIDIA Corporation

November 2001 Available Online: http://oss.Sgi.com/projects

/oglsample/registry/EXT/texture_compression_s3tc.txt
[5] Compressed Texture Resources Microsoft Developer Network

DirectX SDK, April 2006
[6] Brown P, Agopian M EXT texture compression dxt1. opengl

extension registry.

http://opengl.org/registry/specs/EXT/texture_compression_dxt1.txt

[7] Delp E, Mitchell O 1979 Image Compression using Block

Truncation Coding IEEE Transactions on Communications 2(9)

1335–42
[8] Campbell G, Defanti T A, Frederiksen J, Joyce S A, Leske L A,

Lindberg J A, Sandin D J 1986 Two Bit/Pixel Full Color Encoding

Proceedings of SIGGRAPH 22 215–23
[9] Iourcha K, Nayak K, Hong Z 1999 System and Method for Fixed-

Rate Block-based Image Compression with Inferred Pixels Values

US Patent 5,956,431

[10] ATI Compressonator Library Seth Sowerby Daniel Killebrew ATI
Technologies Inc The Compressonator version 1.27.1066

[11] NVidia DXT Library nVidia nVidia DDS Utilities April 2006

Available Online
http://developer.nvidia.com/object/ nv_texture_tools.html

[12] Libsquish, open source DXT compression library writed by Simon

Brown 2006 Available Online: http://code.google.com/p/libsquish/
[13] Crunch, advanced DXT texture compression and real-time

transcoding library. Available Online:

https://code.google.com/p/crunch/
[14] LSDxt DXT compressor by L Spiro October 11 2012. Available

Online: http://lspiroengine.com/?p=516
[15] Pearson K, 1901 "On Lines and Planes of Closest Fit to Systems of

Points in Space" Philosophical Magazine 2(11) 559–72.

[16] Mesa S3TC Compression Library Roland Scheidegger libtxc_dxtn

version 0.1 May 2006

[17] Huo X,2009 Fitting of the Straight Line Equation in Space Journal

Of Huaihua University 28(2) Feb 2009
[18] Kodak Image Dataset released by the Kodak Corporation for

unrestricted research usage (Image source:

http://r0k.us/graphics/Kodak)
[19] Larson E C, Chandler D M 2010 Most apparent distortion: full-

reference image quality assessment and the role of strategy J Electr

Imaging 19 001006 1-21 2010

Authors

Jizhen Ye, born in 1990, Fujian, China.

University studies: Master student, School of Computer Science and Technology, Shandong University, Jinan, China

Jian Wei, born in 1969, Xian, China.

Current position: Researcher, Quallcomm multi-media R&D, San Diego, U.S.A.
Scientific interest: computer vision, graphic technology.

Yan Huang, born in 1974, Tongling, Anhui, China.

Current position, grades: associate professor in the School of Computer Science and Technology, Shandong University.
Scientific interest: Large scale 3D data visualization, intelligent multimedia data analysis.

Jingliang Peng, born in 1974, Feixian, Shandong, China.

Current position, grades: professor in the School of Computer Science and Technology, Shandong University.
Scientific interest: digital geometry processing, content-based multi-media data retrieval, image analysis and understanding.

https://code.google.com/p/libsquish/
https://code.google.com/p/crunch/
http://lspiroengine.com/?author=1
http://en.wikipedia.org/wiki/Karl_Pearson
http://stat.smmu.edu.cn/history/pearson1901.pdf
http://stat.smmu.edu.cn/history/pearson1901.pdf
http://www.cs.sdu.edu.cn/
http://www.sdu.edu.cn/

