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Abstract 

The integrable coupling of the WKI hierarchy is obtained by the perturbation approach. With the help of a higher dimensional loop 

algebra, the coupling integrable couplings of the WKI hierarchy are obtained, respectively. Their Hamiltonian structures are worked 

out by employing the component-trace identities and variational identity. 
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1 Introduction 

 

The notion on integrable couplings was introduced when 

study of Virasoro symmetric algebras [1, 2]. To find as 

many new integrable systems and their integrable 

couplings as possible and to elucidate in depth their 

algebraic and geometric properties are of both theoretical 

and practical value. During the past few years, some 

interesting integrable couplings and associated properties 

of some known interesting integrable hierarchies, such as 

the AKNS hierarchy, the KN hierarchy, the Burger 

hierarchy, etc. were obtained [3-13] In order to get 

Hamiltonian structures of integrable couplings, Guo and 

Zhang proposed the quadratic-form identity [14]. After 

this, Ma and Chen [15, 16] built the variational identity and 

generalized the quadratic-form identity and obtained some 

integrable couplings and their Hamiltonian structures. 

Recently, Ma and Zhang [17] proposed the notion on 

component-trace identities. They are very effective to 

construct the Hamiltonian structure of the perturbation 

equation. In Ref. [18], Ma and Gao proposed the notion 

called coupling integrable couplings of the nonlinear 

Schr¨odinger equation and associated symmetry 

properties, etc. Based on this, Zhang and Tam [19] 

constructed a few higher dimensional Lie algebras to 

obtain the coupling integrable couplings of the AKNS 

hierarchy and the KN hierarchy. 

In the paper, we first give the first-order perturbation 

equation of the WKI hierarchy and its Hamiltonian 

structure is worked out by employing the component-trace 

identities. Then we use the way presented in Ref. [18-19] 

to investigate the coupling integrable couplings of the 

WKI hierarchy. In Refs. [18-19], the author didn't obtain 

the Hamiltonian structure of the coupling integrable 

couplings, while in the paper the Hamiltonian structures of 

the coupling integrable couplings of the WKI hierarchy 

will be worked out by using the variational identity. 

 

2 The perturbation equation of the WKI hierarchy and 

its Hamiltonian structure 

 

Yao and Zhang [20] utilized Tu scheme to obtain the 

multi-component WKI hierarchy. In this section, we take 

the perturbation way to deduce the integrable coupling of 

the WKI hierarchy and employ the component-trace 

identities to generate its Hamiltonian structure. 

Consider the isospectral problem of the WKI hierarchy 

1 1

2 2

, ,x

i u
U U

u i

  
  

  

   
     

   
, (1) 

where 
1 2,u u  are potentials and λ is the spectral parameter. 

By means of constructing a proper time evolution 

[ ] [ ]

1

0 2

,

,
n

n n

t

n
m mx m n m

m mx m m

V V

a b i u a

c i u a a

 

 


 





 

 
 

  


 (2) 

and using the zero-curvature equation, we have the WKI 

hierarchy: 
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where: 
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1 2 1 2 1 2 1 2
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Accordingly, when 0n  , we can get the WKI 

equation. By using the race identity, we can obtain the 

Hamiltonian structure of the WKI hierarchy 
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Next, we will construct a integrable coupling of the 

WKI hierarchy by the perturbation approach and its 

Hamiltonian structure by the component-trace identities. 

Let us take a matrix Lie algebra g consisting of the 

following matrices: 
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where Ai, 0 ,i N   are square matrices of the same order. 

For convenience, we rewrite an element of the Lie algebra 

g as a vector of matrices: 
0 1( , , , ),NA A A A where the 

components ,1iA i N  , are defined by: 
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The enlarged zero-curvature equation by perturbation 
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where the column vector N  of dependent variables is 

1
ˆ ( , , , ).T T T

N Nu    In what follows, we focus on the 

perturbation equation of the first order. We consider an 

isospectral problem as follows: 
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where U0 and V0 are defined by Equations (1) and (2), U1 

and V1 are showed as follows: 
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where: 

1 4 1
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The enlarged stationary zero-curvature equation 

ˆ ˆ ˆ[ , ]xV U V  equivalently yields: 
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A direct calculation leads to: 
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From the recursion relation in Equation (12), we have 

a recursive formula for determining fn, gn: 
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where: 
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Then the enlarged zero-curvature equation 
[ ] [ ]ˆ ˆ ˆ ˆ[ , ] 0
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order perturbation equation: 
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Hence, we can get the following integrable couplings 
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In order to generate the Hamiltonian structure of the 

first-order perturbation equation of the WKI hierarchy, we 

introduce the following theorem: 

Theorem 1 [17] Let g be a matrix Lie algebra consisting 

of block matrices defined by Equation (6). For a given 

spectral matrix 
0 1( , ) ( , , , )NU U u U U U g   , we 

have the variational identity: 
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where 
0 1( , ) ( , , , )NV V v V V V g    satisfies the zero-

curvature equation, all 
k 's are arbitrary constants with 

0N   and γ is the constant determined by 

1
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     This variational identity 

Equation (17) is called the component-trace identity. For a 

general integer N, we have: 
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which is called the last-component-trace identity. Then, 

the generating function of Hamiltonian functions for the 

perturbation equation of N-th order is computed as 
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we can get the generating function of Hamiltonian 

functions for the perturbation equations of N-th order as 

follows: 
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By using the above results, a direct calculation reads 
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Basing on the last-component-trace identities, we have 
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Take 2n   in above equation gives 1.    Thus, the 

Hamiltonian structure of the perturbation equation of the 

WKI hierarchy is derived as follows: 
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3 The coupling integrable couplings of the WKI 

hierarchy and its Hamiltonian structure 

 

The coupling of the WKI hierarchy is given in the above. 

In the section, we will construct the coupling integrable 

couplings by following the way in Ref. [18], which is 

introduced as follows. 

Given two integrable couplings of the integrable 

equation ( )tu K u : 
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We call Equation (26) coupling integrable couplings of 

Equations (24) and (25). 

First, we will construct a 9-dimensional vector-Lie 

algebra and its corresponding loop algebra. Consider a 

vector space [18]: 
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Substituting 
5 6 0u u   in Equation (33) reduces to 

the Equation (14), which is an integrable coupling of the 

WKI hierarchy; when taking 
3 4 0u u   in Equation (33) 

reduces to another integrable coupling of the WKI 

hierarchy. So we call Equation (33) the coupling integrable 

couplings of the WKI hierarchy. 

In order to deduce to the Hamiltonian structure of 
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Solving the matrix equation for the constant matrix F: 
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1 2 3 4 5 6, 2 ( ) 2 ( ) 2 ( ) 2 2 2 ( ) 2 ( ),
U

V i a d h iu c g q iu b f p iu c iu b iu c q iu b p


 
                

 

1 2 3 4

, 2 ( ), , 2 ( ), , 2 , , 2 ,
U U U U

V i c g q V i b f p V i c V i b
u u u u

   
         

                
         

5 6

, 2 ( ), , 2 ( ).
U U

V i c q V i b p
u u

 
    

       
    

 

According the variational identity, we have 

1 2 3 4 5 6( 2 ( ) 2 ( ) 2 ( ) 2 2 2 ( ) 2 ( ))

(2 ( ), 2 ( ),2 , 2 ,2 ( ), 2 ( )) .T

i a d h iu c g q iu b f p iu c iu b iu c q iu b p dx
u

i c g q i b f p i c i b i c q i b p 





       




               


        




 

Comparing the coefficients of 1n   yields 

1 1 1 1 1 1 1 2 1 1 1 3 1

1 1

1 1

4 1 5 1 1 6 1 1

1

1

( 2 ( ) 2 ( ) 2 ( ) 2

2 2 ( ) 2 ( )) 2 (2 ) .

n n n n n n n n n n

n n

n n

n n n n n

n

n

i a d h iu c g q iu b f p iu c
u

c g

b f
iu b iu c q iu b p dx i n

c

b







         

 

 

    





         

  
 

       
 
 
 



 

Taking 2n   in above equation gives 1.    

Hence, the coupling integrable couplings of WKI hierarchy 

Equation (33) can be written as a Hamiltonian form: 
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2
1 1 1 1

2
2 1 1 1

2 2
3 1 1

2 2
4 1

2 2
5 1 1

2 2
6 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0
,

0 0 0 0

0 0 0 0

0 0 0 0

n n n

n n n

n n

t

n

n n

n nt

u c g q

u b f p

u c H
U J

u b u

u c q

u b p





  

  

 



 

 

      
    

      
     

      
     

     
    

           

 (37) 

where 

1 1 1 1 1 1 1 1 2 1 1 1

3 1 4 1 5 1 1 6 1 1

1
(( ) ( ) ( )

1

( ) ( )) ,

n n n n n n n n n n

n n n n n n

H a d h u c g q u b f p
n

u c u b u c q u b p dx

         

     

         


    


 

J is a Hamiltonian operator. 

 

4 Conclusions  
 

In Ref.[19], the coupling integrable couplings of KN and 

AKNS hierarchy are obtained, but their Hamiltonian 

structures  aren't given. In the paper, however, the 

integrable coupling of WKI hierarchy is obtained by the 

perturbation approach and its Hamiltonian structure is 

given by using the component-trace identities. Meanwhile, 

basing on a 9-dimensional Lie algebra, we discuss the 

coupling integrable couplings of the WKI hierarchy and 

obtain its Hamiltonian structure by the variational identity. 

In the future, we will discuss the perturbation equation and 

coupling integrable couplings of other hierarchies and 

their Hamiltonian structures. 
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