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Abstract 

Connecting wind power to the power grid has recently become more common. To better manage and use wind power, its strength 

must be predicted precisely, which is of great safety and economic significance. Speed sensors are widely applied, it make prediction 

of wind power more accurate. In this paper, the short-term prediction of wind power is based on self-adaptive niche particle swarm 

optimization (NPSO) in a neural net. Improved PSO adopts the rules of classification and elimination of a niche using a self-adaptive 

nonlinear mutation operator. Compared with the traditional method of maximum gradient, NPSO can skip a local optimal solution 

and approach the global optimal solution more easily in practice. Compared with the basic PSO, the number of iterations is reduced 

when the global optimal solution is obtained. The method proposed in this paper is experimentally shown to be capable of efficient 
prediction and useful for short-term power prediction. 
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1 Introduction 

 

Wind power is a renewable energy source that is 

becoming increasingly popular for application in the grid 

because of its environmentally friendly and low-cost 

properties. However, because the power fluctuates with 

the wind strength, connecting wind power to the grid is 

challenging. To make the use of wind power reasonable 

and reduce its negative effects on the power grid, 

scientists in many countries have been working to 

develop methods to predict the power of the wind 

generators, which is of great importance to the 

economical distribution and operation of the power grid. 

Advanced wind speed sensor makes it possible to 

accurately predict short-term wind power and plays an 

important role in the wind power prediction. Denmark 

was among the first countries to develop a system of 

power prediction for wind power [1]. Prediktor is the 

wind power work prediction system developed by Ris 

National Laboratory of Denmark, which mainly applies 

physical models [2]. ANEMOS, a research project 

sponsored by the European Union, combines physical and 

statistical methods [3, 4]. The eWind is a system 

developed by AWS Truewind in America [5]. The highly 

precise mathematical models of atmospheric physics and 

adaptive statistical models are combined; the velocity of 

the wind and the power of the wind power plants have 

been investigated in studies based on time serials and 

neural networks [6-8]. At present, quite some few PSO 

alternatives such as Wang et al (2012) [9], Pousinho et al 

(2010) [10] or Pratheepraj et al (2011) [11] for short-term 

wind power prediction, and so on. 

The back propagation (BP) neural network is the 

mostly widely used neural network. The classic BP 

learning law is typically used in BP neural networks to 

determine net-work connection weights. However, this 

technique is slow in practice and may lead to a local 

optimal solution. In this paper, the short-term power 

prediction of the wind power is based oneself-adaptive 

niche particle swarm optimization (NPSO) in a neural 

network. Improved PSO adopts the rules of classification 

and elimination of a niche and uses a self-adaptive 

nonlinear mutation operator. Compared with the 

traditional method of maximum gradient, NPSO can skip 

a local optimal solution and approach the global optimal 

solution more easily in practice. Compared with the basic 

PSO, the number of iterations is reduced when the global 

optimal solution is obtained. The method proposed in this 

paper is experimentally shown to be capable of efficient 

prediction and useful for short-term power prediction. 

 

2 The principle of prediction of wind power based on 

speed data from mechanical sensors  

 

In 1926, Betz proposed general theory of Betz about 

aerodynamic action of the wind. From this theory, we get 

the formula related to the power output of wind turbines 

and wind speed as shown in Equation 1. 

P1=8/27ρSV3CP, (1) 
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ρ is the density of air, S is cross-sectional area of airflow 

through wind turbine fan. V is the average wind speed 

through the fan. CP is the actual utilization of wind 

turbine efficiency. 

n=2NV/D (2) 

N=½ρAram (3) 

D=2πρr2Abm (4) 

The wind speed measured by cup anemometer is 

based on the formula 2-4. In Equations (2), (3) and (4), n 

is the rotational speed of cup anemometer; A is the cross 

sectional area of the cups; am and bm are intrinsic 

parameters of cup anemometer. From the formula (1)-(4), 

we can obtain the wind turbine power from the wind 

speed measured by wind speed sensor. When we want to 

know the wind power of sometime later in the future, we 

can use hybrid swarm intelligence theory based on speed 

data from speed sensors. It is described the prediction of 

wind power as shown Figure 1  

 
FIGURE 1 Schematic diagram for the prediction of wind power 

 

3 Theoretical basis for improved self-adaptive PSO 

 

3.1 THEORETICAL BASIS FOR BASIC PARTICLE 

SWARM OPTIMIZATION  

 

In 1995, J. Kennedy and R. C. Eberhart developed PSO 

[12, 13], which aims to simulate a simple social system, 

such as a bird flock searching for foods, to study and 

explain complex social behaviour. In basic PSO, every 

candidate solution is compared to a bird searching the 

space and is called a particle. The position and velocity of 

a particle is denoted as 
i i1 i2 iDX ( , x ,...,x )x  and 

i i1 i2 iDV ( , ,..., )v v v , respectively. At the initial stage, a 

swarm of particles is randomly selected. Then, the swarm 

is updated according to the best known positions of 

individual particles and the entire swarm. The equations 

defining the position and velocity of the particles are 

shown below: 

id id 1 1 id id

2 2 id id

id id id

v (k+1) = wv (k) + c r (p (k) - x (k))

+ c r (g (k) - x (k))

x (k+1) = x (k) + v (k)

 (5) 

In Equations (5) and (6), p is the best known position 

of a particle and g is the best known position of the entire 

swarm; i = 1,2·n; D is the dimension of a particle; k is the 

k-th iteration; d is the d-th dimension; kmax is the 

maximum number of iterations; w is the inertia weight; 

wini is the initial inertia weight; wend is the final inertia 

weight; c1 and c2 are learning factors; and r1 and r2 are 

uniform random numbers in the range [0, 1].   

3.2 ADAPTIVE NICHING PARTICLE SWARM 

OPTIMIZATION 

 

Basic PSO may lead to premature convergence to a local 

optimum, thus affecting the quality of the solution. The 

probability of prematurity can be reduced by mixing 

basic PSO with other algorithms or by adopting a 

comprehensive strategy. Niche technology simulates 

ecological balance, i.e., a species evolves to establish a 

surviving niche in a larger environment, which reflects 

the evolutionary rule of survival of the fittest. Goldberg 

and Richardson described niche technology based on a 

sharing mechanism in [14], and Brits et al., described 

NPSO in [15, 16]. The following formulae are based on 

adaptive NPSO: 

id id 1 1 id id

2 2 id id 3 3 id id

id id id

v (k+1) = wv (k) + c r (p (k) - x (k)) +

c r (g (k) - x (k)) + c r (p (k) - x (k))

x (k+1) = x (k) + v (k)

 (7) 

ini end end

max

k
w = (w - w ) exp(-1/ [1+ (1+ )]+ w

k
 (8) 

In Equations (7) and (8),  ͞ pid is the best known 

position of a sub-swarm; c3 is the learning factor; and r3 

is a uniform random sequence in the range [0, 1].  

The diversity selection of the swarm regulates the 

adaptability of individual particles by reflecting the 

sharing functions among them, upon which the later 

evolutionary process is selected, to create an evolved 

environment and to realize swarm diversity. 

The adaptive mutation operator adopts an adaptive 

non-linear decreasing inertia weight function [17]. The 

decreasing velocity of the inertia weight is accelerated in 

the first iteration of the algorithm to achieve a more 

efficient solution. 

 

3.3 THE MAIN STEPS OF THE IMPROVED PSO 

ALGORITHM  

 

The main steps of the improved PSO algorithm are as 

follows: 

Step 1 Start. 

Step 2 Generate the initial population by chaotic iteration. 

Step 3 Initialize parameters. 
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Step 4 Select a particle randomly and divide all of the 

particles evenly into m small niche 

subpopulation based on adaptive functions. 

Step 5 Establish the initial velocity of the particles 

randomly.  

Step 6 Set the initial position of the present particle as the 

individual historical optimal value, pbx; set the 

historical optimal value of the optimal individual 

in each subpopulation as the population 

historical optimal value, p bx; and set the 

historical optimal value of all of the particles as 

the overall historical optimal value, gbx. 

Step 7 When k is less than the maximum number of 

iterations, the following cycle of operations is 

performed for each subpopulation: 

I) Calculate the inertia weight, threshold value, 

and calibration coefficient. 

II) Update the velocity and position of every 

particle within each subpopulation. 

Step 8 Adopt a niche elimination strategy. 

Step 9 Determine whether the convergence conditions are 

met; if so, stop the calculation and output the 

results; if not, go to Step 6.   

Step 10 End. 

 

3.4 TESTING THE IMPROVED PSO ALGORITHM 

USING STANDARD TEST FNCTIONS 

 

To test the performance of the improved PSO algorithm, 

two standard testing functions are selected: the 2-D 

Rosenbrock function and 2-D Rastrigin function. 

Standard testing functions are commonly employed in the 

optimization literature to evaluate the efficiency of new 

algorithms [18, 19]. The two standard testing functions 

have numerous local optima and a global minimum that 

is very difficult to locate.  

 

3.4.1 The 2-D Rosenbrock Function 

 

The 2-D Rosenbrock function is given by Equation (9): 

2 2 2

1 2 2 1 1f(x ,x )=100(x -x ) (1 x )                                   (9) (9)  

For the 2-D Rosenbrock function in this paper, the 

global minimum is fglobal = 0 as x = (1,1), but the valley 

in which the minimum lies has steep edges and a narrow 

ridge. The tip of ridge is also steep. Figure 2 illustrates 

the main characteristics of the 2-D Rosenbrock function.  

-2

-1

0

1

2

-4-3-2-101234

0

2000

4000

6000

8000

X1

Rosenbrock Function

X2

  
f 

(X
 1

 ,
X

 2
)

       Global Minimum 

 
FIGURE 2 Graph of the Rosenbrock function 

3.4.2 The 2-D Rastrigin function 

 

The 2-D Rastrigin function is given by Equation (10): 

2 2

1 2 1 2 1 2g(x ,x )=x x 10[cos (2 x ) cos (2 x )] 20      (10) 

For the 2-D Rastrigin function employed in this paper, 

the global minimum is fglobal = 0 when x = (0,0). There are 

many local minima arranged in a lattice configuration, as 

shown in Figure 3. Figure 3 illustrates the main 

characteristics of the 2-D Rosenbrock function. 
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FIGURE 3 Graph of the Rastrigin function. 

The global minima of the 2-D Rosenbrock function 

and 2-D Rastrigin function can be located by simulation 

computation based on the improved PSO algorithm. Thus, 

the model based on the improved PSO can be used in 

practice. 

 

4 Neural Network Model Based on Self-Adaptive 

Niche PSO 

 

4.1 THERORETICAL BASIS FOR THE BASIC 

NEURAL NETWORK  

 

Since the insightful study of the neural network in the 

1980s [20, 21], neural networks have been widely applied 

to the industrial field. The artificial intelligence neural 

network is a complex nonlinear system. The artificial 

neural network is also a nonlinear mapping system with 

good self-adaptability and can be used to identify any 

complicated state or process. 

Figure 4 describes a simple artificial intelligence 

neural network. The basic principle of the neural network 

model to process information is that the input signal X(i) 

acts on the intermediate node (the hidden layer), leading 

to a result from the output node, which utilizes a non-

linear transformation and generates an output signal Y(k) 

by adjusting W(ij), the value relating to the input nodes 

and hidden layer nodes. T(jk), the value relating to the 

hidden layer nodes, the output node, and their respective 

values, is reduced by repetitive learning training; the 

network parameters (weights and threshold values) 

relating to the minimum error are determined. The 

training continues until the error reaches the threshold 

value. The BP neural network model is expressed in 

Equation (11):  

dict://key.0895DFE8DB67F9409DB285590D870EDD/artificial%20intelligence
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j ij i j

k jk j k

O f ( W X q )

Y f ( T O q

   

   
 (11) 

 
FIGURE 4 Artificial intelligence neural network 

4.2 THE STEPS OF THE PREDICTION ALGORITHM 

BASED ON SELF-ADAPTIVE NPSO NEURAL 

NETWORK 

 

The main steps of prediction algorithm based on the self-

adaptive NPSO neural network are as follows: 

Step 1 Start. 

Step 2 Input the initial values and target values of the 

samples. 

Step 3 Initialize the coupling weight values and 

thresholds. 

Step 4 Convert connection weights and thresholds to 

particles. 

Step 5 Divide the initial population into several small 

niche subpopulations. 

Step 6 Calculate the adaptive values of the particle 

swarm. 

Step 7 Determine the best known positions of the 

individuals, sub-populations, and overall 

population.  

Step 8 Adjust the adaptability and inertia weight and 

update the velocity and position of the particles. 

Step 9 Judge whether the niche update conditions are 

met. If not, go to Step 6. 

Step 10 Run the niche optimization rules. 

Step 11 Judge whether the maximum time is reached. If 

not, go to Step 6. 

Step 12 Determine the coupling value and threshold. 

Step 13 End. 

 

5 Predictive Analysis of the Neural Network Based on 

Self-Adaptive NPSO 

 

The power prediction model is established by the neural 

network based on self-adaptive NPSO (improved PSO). 

The power of a wind generator in Dongtai (Jiangsu, 

China) was predicted in 2008 based on the 

meteorological data and data for the power generated by 

the wind generator in the previous months. The predictive 

models for the neural network are based on PSO, NPSO, 

and Traingdm. First, the original data related to wind 

speed and wind power must be processed and normalized 

by advanced mathematical methods [22, 23]. For 

example, the model will observably decrease systematic 

error when the origin data have been processed by the 

Kalman filter described in the literature [24, 25]. All 

predictive models are trained beforehand. Figure 5 

illustrates the main characteristics obtained from different 

prediction models 3 h ahead. Figure 5(a) illustrates that 

higher wind powers generally correspond to higher wind 

speeds. Figure 5(b) presents the measured power and 

forecasted power based on PSO, improved PSO, and 

Traingdm. Comparing the results of the three methods, 

the forecasted wind power curve based on the improved 

PSO is the closest to the measured power in Figure 5(b). 

Figure 5(c) presents the relative error from different 

predictions. The minimum relative error of the forecast 

wind power is obtained by the improved PSO method. 

Figure 5(d) illustrates the frequency and probability from 

different prediction models based on PSO, improved PSO, 

and Traingdm. The probability of a relative error of less 

than 0.1 for the improved PSO method is greater than 

those of PSO and Traingdm. Thus, the prediction 

accuracy of the improved PSO method is better than 

those of PSO and Traingdm. The absolute error, relative 

error, means absolute error, mean relative error, standard 

deviation, and relative standard 
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FIGURE 5 Main characteristics obtained from the three different predictions 

 

(a) Wind speed and wind power. (b) The measured 

power and forecasted power based on PSO, improved 

PSO, and Traingdm. (c) Relative error from different 

prediction models based on PSO, improved PSO, and 

Traingdm. (d) Frequency and probability from different 

prediction models based on PSO, improved PSO, and 

Traingdm. 

Deviation and interval probability in this paper are 

illustrated by Equation (12) [26]. From this data of Figure 

5(d), we can determine the best method of the three based 

on PSO, improved PSO, and Traingdm. 

absolute error = | forecast ( )-measure ( )|

| forecast ( )-measure ( )|
mean absolute error  

n

| forecast ( )-measure ( )|
relative error =

measure ( )

relative error 
mean relative error =

n

standard deviati

i i

i i

i i

i



n n
2

i=1 i=1

n

i=1

1
(forecast ( )- forecast ( ))

n
on

n-1

standard deviation
relative standard deviation

1
forecast ( )

n

frequency(counts)
interval probability =

n

i i

i





 



 

(12) 

 

6 Conclusions 

 

In this paper, a predictive model for neural networks 

based on self-adaptive NPSO is established. Using model 

analysis, experiments, and comparison with predictive 

models based on other algorithms, the model is shown to 

be more precise than the other two models considered; 

furthermore, it has the lowest absolute variance, 

demonstrating its effectiveness. The reliability of the 

model is significantly related with the precision of the 

weather forecast, but by combining with the weather 

predictive model, the dependence will be lowered. With 

computers becoming increasingly powerful, the 

predictive method of the neural network based on hybrid 

multi-algorithms will be useful in the future.  
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