Digital media animation design based on max script language

Qiaqiao Feng

Harbin university of science and technology, Heilongjiang Harbin, 150080

Corresponding author’s e-mail: 1175560050@qq.com

Received 12 January 2013, www.cmmt.lv

Abstract

MAX SCRIPT can perform a large number of routine operation to solve the repetitive modelling task for us in the process of manufacture. This thesis mainly realizes wolf’s character animation and the action of walking, running, jumping, falling down and finger gestures of character animation are designed. Modelling, pasting material, skeletal skin and importing code is investigated. And at the same time, Max Script of 3D MAX can make production of animation more rapid and precise.

Keywords: digital media, animation, Max Script

1 Introduction

3DSMAX was developed by Autodesk company, which is a most widely used three dimension animation software in the world today [1, 2]. It has a wide range of applications, and plays an important role. At present, the development of domestic three dimensional animation falls behind some countries such as Japan and the United States [3, 4]. English and programming base of designers engaged in art design generally is not high, and books about MAX script scripting language is very few. Animation professional level is relatively backward. If some complex animation is made, it is very difficult to complete or not nearly as well. Foreign animation basically uses script language to produce complex scenes, the effect of which is more perfect and more efficient.

3DS MAX is three dimensional animation design software, which is the most common and the most powerful domestic animation. Research and application for modeling technique of 3D animation character based on 3DS MAX was proposed by PENG Guo-hua [5]. Application of multimedia technology in the classroom teaching of 3ds max was proposed by QIN Zhi-xin [6]. Deng Shiyuan [7] created animation images with Chinese culture characteristics through analyzing the Chu art characteristics and taking them as artistic reference of animation modelling. Study on three-dimensional visual modeling for switchboard of ship power down of the wolf. In section 4, animation effect of the designed wolf is given, including running, walking and falling down of the wolf. Section 5 gives some conclusions.

2. The script is integrated into work interface of the user application panel to provide script a standard MAX user interface.

3. Use I/O of the inserted file to build user input/output tools.

This paper mainly uses MAX script to create the Wolf's model and the action of the animation. A text file with ms as its suffix is set up, which can be established by using any text editor or by choosing New Script of MaxScript menu.

macros.run "Objects" "Sphere" Sphere radius:14.4704 smooth:on segs:32 chop:0 slice:off sliceFrom:0 sliceTo pos:[-148.495,84.9498,0] isSelected:on

set animate on sliderTime = 100f move $ [193.172,-151.558,0].Choose the "Run Script" of "MaxScript" in 3DMax menu to run the above script. (1) observe the effect (2) choose "MaxScript Listener" of "MaxScript" as shown in figure 1, then you can start to examine the script code of current operation. Any operation in 3DS Max can be expressed as a line of script code.

In the next section, model making of wolf is investigated and relevant codes are given. In Section 3, motion synthesis of the designed wolf is given. In section 4, animation effect of wolf is given, including running, walking and falling down of the wolf. Section 5 gives some conclusions.

FIGURE 1 MaxScript Listener

1. Describe the 3D Studio MAX all features, such as modelling, animation, material, rendering, etc.

Mathematical and Computer Modelling
2 Model making

Through the code, animal models are created. Modelling steps are as follows. 1. The foot modelling 2. The trunk modelling 3. and The arm modelling 4. Hand modelling and 5. Facial modelling. The core code of creating an object, moving, rotation and guiding angle is given. Box lengths: 1 width: 1 height: 1 length: 1033.33 width: 835.08 height: 175.034 (create a rectangle of a specified dimension).

mapcoors: on pos: [-8732.92, 901.54, 0] is Selected: on

macros.run "Modifier Stack" "Convert_to_Poly" (The cuboid is converted to editable poly)

subobjectLevel = 4
modPanel.setCurrentObject $.baseObject
$.EditablePoly.SetSelection #Face #[3]
$.bevelHeight = 16.64
$.bevelOutline = 2
$.EditablePoly.buttonOp #Bevel

The code of using Nusmr for detailed division is as follows.

Nusmr points to the polygon segmentation in detail. Polygon can be made more pliable and suitable for animation production, which can be set up by adjusting the segmentation.

actionMan.executeAction 0 "40472"
select $Box01
clearSelection()
select $Box01
select #($Box03, $Box02, $Box01)
clearSelection()
select $Box01

subobjectLevel = 2
modPanel.setCurrentObject $.baseObject
$.surf.Subdivide = on
$.isolineDisplay = on
$.surf.Smoothing = on
$.surf.Subdivide = off
subobjectLevel = 0
actionMan.executeAction 0 "60010" --Render: Render scene dialog switch

Front view of wolf is shown in figure 2, back view of wolf is shown in figure 3, and full view with hand is shown in figure 4. After the model is built, the corresponding material of each model should be given. In the implementation of a virtual animal, fidelity of material largely determines the truth animal sense. In order to achieve a more realistic material, surface texture must be used. Effect after texture script is shown in figure 5 and figure 6 respectively.

Part of the material code:

meditMaterials[1].shaderType = 4
meditMaterials[1].adTextureLock = on
meditMaterials[1].diffuseMap = falloff ()
meditMaterials[1][#Mapping][# Diffuse _Map_0___Falloff].color1 = color 0 27 161
meditMaterials[1][#Mapping][# Diffuse _Map_0___Falloff].color2 = color 205 219 235
meditMaterials[1].opacityMap = falloff ()
meditMaterials[1].bumpMapEnable = on
meditMaterials[1].bumpMap = Noise ()
meditMaterials[1][#Mapping][# concave-convex _Map_4___Noise].type = 2
meditMaterials[1][#Mapping][# concave-convex _Map_4___Noise].levels = 2.9 (Attenuation instruction)

Effect of skeletal skin is given below. Skeletal skin is created based on skin of the skeletal system, which makes the body mesh deformation be consistent with the skeletal system movement, including muscle tension and torsion.
Part of MAX SCRIPT code is as follows. Skeletal skin is shown in figure 7.

```maxscript
actionMan.executeAction 0 "40003" -- open the file
actionMan.executeAction 0 "40472" -- MAX SCRIPT listener
select $Box01
select $'Bip01 R Hand'
select #($'Bip01 R Finger0', $'Bip01 R Hand', $'Bip01 R Forearm', $'Bip01 R Finger1', $Box01)
select #($'Bip01 R Hand', $Box01)
clearSelection()
select $Box01
actionMan.executeAction 0 "224"
freeze $
select $'Bip01 R Finger1'
clearSelection()
macros.run "Inverse Kinematics" "Bones"
macros.run "Objects Systems" "Biped"
$Bip03.name = "Bip02 pelvis"
$Bip03.name = "Bip02 Spine"
$Bip03.name = "Bip02 Spine1"
$Bip03.name = "Bip02 Spine2"
$Bip03.name = "Bip02 Spine3"
$Bip03.name = "Bip02 L Thigh"
$Bip03.name = "Bip02 L Calf"
$Bip03.name = "Bip02 L Foot"
$Bip03.name = "Bip02 R Thigh"
$Bip03.name = "Bip02 R Call"
$Bip03.name = "Bip02 R Foot"
$Bip03.name = "Bip02 L Clavicle"
$Bip03.name = "Bip02 L UpperArm"
$Bip03.name = "Bip02 L Forearm"
$Bip03.name = "Bip02 L Hand"
$Bip03.name = "Bip02 R Clavicle"
$Bip03.name = "Bip02 R UpperArm"
$Bip03.name = "Bip02 R Forearm"
$Bip03.name = "Bip02 R Hand"
$Bip03.name = "Bip02 head"
$Bip03.name = "Bip02 footprint"
$Dummy01.name = "Bip02 head Nub"
$Bip04.name = "Bip02 pelvis"
$Bip04.name = "Bip02 head"
$Bip04.name = "Bip02 footprint"
```

3 Motion synthesis

In the process of movement, a few scripts associated with movement are connected together, making the model able to complete the series of coherent movement. Implementation effect of motion synthesis is to make several sets of disjointed movement synthesize to the same period of the animation. In the thesis, the script will complete continuous motion animation of a wolf. The script is a complete action script generated by the MAX script in advance. Key code of act of walking is shown in figure 8. Key code of running action is shown in figure 9. In this way, we can use multiple MAX SCRIPT codes to produce the action of walking, running, jumping and falling down. Core codes are as follows.

```maxscript
actionMan.executeAction 0 "40003"
select $Box01
modPanel.setCurrentObject $.baseObject
$surfSubdivide = on
subobjectLevel = 1
modPanel.setCurrentObject $.baseObject
subobjectLevel = 0
modPanel.setCurrentObject $.baseObject
subobjectLevel = 2
actionMan.executeAction 0 "40472"
select $'Bip01 R Forearm'
actionMan.executeAction 0 "40472"
clearSelection()
actionMan.executeAction 0 "40472"
select $'Bip01 L UpperArm'
actionMan.executeAction 0 "40472"
clearSelection()
actionMan.executeAction 0 "40472"
$'Bip01 L UpperArm'
```

Through the adjustment of the camera script, makes control of camera lens more precise and more regular. The common script language related to camera movement is as follows.

- Script MoveViewInStart()
- Script MoveViewInStop()
- Script MoveViewOutStart()
- Script MoveViewOutStop()
- Script CameraZoomIn(x)
- Script CameraZoomOut(x)

Code of increasing the animation time range is as follows.

```maxscript
--- Assign rotation script controller
Ctrl=obj. rotation. controller=rotation—script()
-- Set time range wide in case user expands it later
```
Time Range ctrl (interval—100 10000)

--put script string into script controller . ctrl .script=
scriptstr
bbox height:10 --1
at time 5 animate on b.height=50 --2
at time 10 animate on b.height=100 --3
bhc=b.height.controller --4
bhk=bhc.keys --5
addnewkey bhc 7 --6
addnewkey bhc 9 --7
for k in bhk do format "i:4\n" k.time k.value --8
selectKeys bhc (interval 7 9) --9
deleteKeys bhc #selection --10
bhk --11
addnewkey bhc 7 --12
addnewkey bhc 9 --13
selectKeys bhc (interval 7 9) --14
deleteKeys bhc #selection #slide --15
bhk --16
addnewkey bhc 7 --17
addnewkey bhc 9 --18
selectKeys bhc (interval 7 9) --19
deleteKeys bhc #selection #slide #rightToleft --20
bhk --21
addnewkey bhc 8 --22
i=getKeyIndex bhc 8 --23
selectKey bhc i 10 --24
moveKey bhc i 10 --25
bhk --26
getKeyTime bhc 4 --27
b.width.controller=noise_float() --28
makekeys b.width.controller --29

FIGURE 8 Key code of act of walking

 BOX:Box04 @ [0.000000,0.000000,0.000000] --1
 50 --2
100 --3
Controller:Bezier_Float --4
#keys(0f, 5f, 10f) --5
#Bezier Float key(3 8 7f) --6
#Bezier Float key(4 8 9f) --7
0f=10.0
5f=50.0
7f=74.08
9f=95.5022
10f=100.0 --8
OK --9
OK --10
OK
#keys(0f, 5f, 10f) --11
#Bezier Float key(3 8 7f) --12
#Bezier Float key(4 8 9f) --13
OK --14
OK --15
#keys(0f, 5f, 10f) --16
#Bezier Float key(3 8 7f) --17
#Bezier Float key(4 8 9f) --18
OK --19
OK --20
#keys(0f, 5f, 10f) --21
#Bezier Float key(3 8 6f) --22
3 --23
OK --24
OK --25
#keys(0f, 5f, 10f, 10f) --26
10f --27
Controller:Noise_Float --28
-1 --29
OK

FIGURE 9 Key code of act of running

—4 Animation effect

FIGURE 10 Effect of walking

FIGURE 11 Effect of falling down

FIGURE 12 Effect of running

FIGURE 13 Effect of jumping
Finally, the designed animation effect is given. Effect of walking is shown in figure 10, effect of falling down is shown in figure 11, effect of running is shown in figure 12, effect of jumping is shown in figure 13 and effect of movement of fingers is shown in figure 14.

5 Conclusions

Firstly, model making of wolf is investigated and relevant codes are given. Then Motion synthesis of the designed wolf is investigated. Animation effect of wolf is shown, including running, walking and falling down of the wolf. It can be seen that production of animation is more rapid and precise.

References

[5] Feng Qiaoqiao 2010 Research and Application for Modeling Technique of 3D Animation Character Based on 3DS Max Journal of Shaanxi University of Science & Technology
[10] Liu Wen-je 2009 On How to Develop the Animation Industry in China Today CD Technology

Author

Feng Qiaoqiao, 16 October 1979, China

Current position, grades: Lecturer
University studies: Digital Media Art
Scientific interest: Digital Media Art
Experience: Now work as a lecturer in digital media art research in the Art College of Harbin University of Science and Technology since 2002
Achieved Master’s Degree of Art Design from Harbin Normal University in 2012
Achieved Bachelor’s Degree of Art Design from Harbin Normal University in 2002