# Analysis on vibration of small-scale hydroelectric generating unit

### Liying Wang\*, Lisha You

School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056021, China

Received 1 June 2014, www.cmnt.lv

#### Abstract

An analytical model for the vibrations of operating conditions of small-scale hydroelectric generating unit is developed based on frequency domain and time domain. Firstly the vibration of unit 2 in Xida hydropower station is tested by using intelligent data logger, where the DASP10 software is used to collect the data and analyse them; and then the data are analysed by the time domain analysis, shaft centreline orbit analysis and auto-spectrum analysis respectively. Finally some instructive conclusions on the exceedance of shaft degrees and the overweight phenomena are drawn, which may assist an overhaul to raise the operating efficiency and the power output.

Keywords: Hydroelectric Generating Unit, Vibration, Time Domain Analysis, Shaft Centreline Orbit, Auto-spectrum Analysis

#### **1** Introduction

In recent years, a large number of small hydropower stations have sprung up in many urban and rural areas, it has become an indispensable part of residential living electricity and industrial electricity in China, but the small-scale hydrocelectric generating units have a poor performance in the quality and efficiency at present due to low investment, the limitation of technical level and there is often lack of the monitoring and analysis of unit vibration, which causes many units damage [1]. At present, the analysis and research methods, which are used in turbine vibration have the following kinds: fluid numerical calculation, model test, real machine test, and system modelling identification study [2-5]. In this paper, according to the reality and other factors, the real machine test method is used to monitor and analyse the vibration of unit 2 in Xida hydropower station, meanwhile the obtained data are analysed by the time domain analysis, shaft centreline orbit analysis and auto-spectrum analysis respectively, some instructive and important conclusions on the exceedance of shaft degrees and the overweight phenomena are drawn.

Xida hydropower station located in She county of Handan was founded in the late 1980s, and it belongs to the typical small hydropower, its rated power is 500kw, its rated speed is 375r/min. In the daily operation process, the engineering technicians find that there exists an abnormal vibration and a higher oil temperature in the bearing of units after excitation.

#### 2 Experimental test systems

#### 2.1 MONITORING POINT ARRANGEMENT

Unit 2 in Xida hydropower station is the test object, the X, Y directions of large shaft flange and water guide bearing all decorate eddy current transducers, and the X, Y, Z directions of upper bracket, lower guide bearing, water guide

bearing and the head cover respectively arrange acceleration sensors. Figure 1 is the test site arrangement.



FIGURE 1 Test site arrangement

#### 2.2 WORKING CONDITIONS SET

The test is divided into 12 working conditions which are as follows: the boot, plus exciting ,synchronization, load increasing to 250kw, load increasing to 500kw, load increasing to 600kw, keeping 600kw, load reducing to 500kw, load reducing to 250kw, splitting, reducing excitation, shutdown.

#### 3 The basic analysis method

#### 3.1 TIME DOMAIN ANALYSIS METHOD

Time domain analysis method is most commonly used in vibration signal analysis, the waveform is generated by the original waveform signal, which has a strong intuitive, and can accurately show the change trend of the signal amplitudes with the time [6, 7].

<sup>\*</sup> Corresponding author e-mail: 2000wangly@163.com

In vibration measurement, there are three basic parameters: displacement, velocity and acceleration, the formulas are given below respectively:

$$x = A\sin(\omega t + \phi), \tag{1}$$

 $\dot{x} = A\omega\cos(\omega t + \phi), \qquad (2)$ 

 $\ddot{x} = -A\omega^2 \sin(\omega t + \phi) \,. \tag{3}$ 

#### 3.2 SHAFT CENTRELINE ORBIT ANALYSIS

Shaft centreline orbit is refers to the axis of rotation in the rotating machinery and the axis is relative to the trajectory of the bearing. In the actual operation process, the abnormal vibration of hydroelectric generating unit will respond on the locus of journal bearing. The Shaft centreline orbit diagram shows the operation situation, which is a simple visual image method, and one can see the change situation from the diagram, and is easier to determine the vibration sources, which influence the stability of unit [8, 9].

#### **3.3 AUTO SPECTRUM ANALYSIS**

Auto-spectrum analysis transforms signals from time domain to frequency domain, and each periodic harmonic component corresponding to the spectrum of the signals is obtained. With the change of factor generated by the frequency of the vibration signals, the vibration will be changed., the frequency domain analysis is carried out on the collected signal to better grasp the dynamic law of vibration. The meaning of auto-spectrum analysis is a more complex signal of waveform in a specific period, which is, transformed various harmonic amplitudes the frequency and phase information and they are divided into multiple independent harmonic components [10, 11].

The signals are transformed by fast Fourier, which is defined as follows:

$$x(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt , \qquad (4)$$

where:  $\omega = 2\pi f$ , f(t) is time domain data sequence and  $x(\omega)$  is the frequency spectrum function of the sequence. Its inverse transformation form is:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(\omega) e^{j\omega t} dt , \qquad (5)$$

 $x(\omega)$  is a complex function:

$$c(\omega) = |x(\omega)| e^{j(\omega)}, \qquad (6)$$

 $|x(\omega)|$  is the amplitude function of  $x(\omega)$ . In practice, the amplitude-frequency drawing cannot be coming out, the frequency density of  $x(\omega)$  usually can be used to make an approximate description:

$$x(\omega) = 2\pi x(f) . \tag{7}$$

In this test, the spectrum analysis is used to judge the vibration of hydro-generator units. In analysis, FFT is used to make a frequency domain analysis for the vibration signals.

#### 4 The analysis results

## 4.1 TIME DOMAIN ANALYSIS RESULTS OF SHAFT SWING

Under the working condition of the above 12, the data are analysed respectively for time domain analysis; the results are shown in Figure 2.

It can be seen that, from Figure 2, when the conditions are in a state of stable work, shaft swing is beyond status, the maximum superscalar is 0.465mm and 0.447mm in X and Y directions, (the allowed values is 0.250mm); under most of the working conditions, the shaft swing at water guide bearing in X and Y direction is in the acceptable range, only in the part of the time period, it is in excessive state, X direction is 0.353mm and 0.263mm, Y direction is 0.575mm and 0.362mm, (the allowed values is 0.250mm). When the working conditions are changing, the shaft swing is also in excessive state, the maximum superscalar is 1.808 mm and 0.974mm in X and Y directions under the reduction excitation condition, (the allowed values is 0.250mm); the shaft swing at water guide bearing in X direction is in excessive state, the biggest superscalar is 0.766mm under the reduction excitation condition, (the allowed values is 0.250mm), the shaft swing in Y direction is in the acceptable range only under the processes of synchronization, load increasing and keep 600kw. Under other conditions, the swing is overweight; the largest superscalar also occurs under reduction excitation condition, the value is 1.206mm, (the allowed values is 0.250mm). Based on the above analysis, we can draw a conclusion that the shaft swing is the biggest in the reduction excitation condition.



Wang Liying, You Lisha

|                                                                                                                                                                                                                                                            | co. Laenkandinakandinkandinkandinkandinkandinkandinkandinkandinkandinkandinkandinkandinkandinkanding ada bada a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (mm) [3:進亡:2万向] 光标-A=-0.17774-mm                                                                                                                                                                                                                           | 0.5 [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                                                                                                                                                                                            | <ul> <li>เป็นสารหมายสารทางหมายสารทางหมายสารหมายสารทางหมายสารทางหมายสารทางหมายสารทางสารทางสารหมายสารทางสารทาง</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 0.5                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| (mn) [4 軸下部+方向] 光标:A=-0,03132 mm<br>0.5                                                                                                                                                                                                                    | 0.5 [mm] 14轴正部公司印记光程:A=0.04624mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                                                                                            | o.o. א <sup>שעו</sup> איין איז                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 0.5 [s轴下部/方向]光标/A=-0.01625 mm                                                                                                                                                                                                                              | -0.5<br>0.5 (mi) [5:唯下卸/万问] 光祥:40.04612 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 0.5                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 0.5                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| (c) The synchronization condition                                                                                                                                                                                                                          | (d) The load increasing to 250kw condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| mm) [2:迪兰y方同] 光振:A=0.00813 mm                                                                                                                                                                                                                              | (mm) [2:法兰v方@ 光标:A=0.16046 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                            | ••• TANDA WALLANDA AND AND AND AND AND AND AND AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| am) [5]志兰x月6][ 光標:A-0.18235 mm                                                                                                                                                                                                                             | (mm)[Di流兰x方(祖光标:A=0.07909 mm<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                                                                                            | •• WARRAND WARRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| (mm) [4]铀下鄙x方问] 光标:A=-0.04369 mm                                                                                                                                                                                                                           | (mm) [化轴下器x方向] 洗标:A=0.06111 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                                                                                                            | MWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| am)[5:曲下錄y方[6] 光惊:A-0.01096 mm                                                                                                                                                                                                                             | (rm) [5:轴下部r万iū] 光标-A-0.03993 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| (e) The load increasing to 500kw condition                                                                                                                                                                                                                 | 0 2 4 6 8 10 12 14 16<br>(f) The load increasing to 600kw condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| (c) The fold increasing to sookw condition                                                                                                                                                                                                                 | (i) The fold meredship to bookw condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| ferm) [2)進至7月回)光禄(4=0.14607 mm<br>第1443114711144144444447474314431443144314                                                                                                                                                                                | (mm) [2:美兰y万(0] 光振:A=-0.11579 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                                                                                            | o มระหมายมาและและและและและและและและและและและและและแ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| A A BANA MANA MANA MANA MANANA MAN                                                                                                                                            | and To the will of Manuage rates and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| មានក្នុងសមានមានការសមានការសមានការសមានការសមានការសមានការសមានការសមានការសមាន                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| (nm) (+抽下部k为回此光标-A=-0.04085 mm                                                                                                                                                                                                                             | [mm] [4:轴下部:方向] 光矩:A=-0.05626 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| (mm) [5]抽下部/方向] 光好:A=-0.05228 mm                                                                                                                                                                                                                           | (mm) [5:触下部/方面]光标:A=-0.03083 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| NIXAANAANNAANAANAANNAANAANNAANAANNAANAANAA                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 2 4 6 8 10 12 14 16                                                                                                                                                                                                                                        | 0 5 10 15 20 25 80 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| (g) The keeping 600kw condition                                                                                                                                                                                                                            | (h) The load reducing to 500kw condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| am) [2法兰·方向]] 光标:A=0.01737 mm                                                                                                                                                                                                                              | 2 (m) [2)法兰·坎坷何] 光标A=-0.13192 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| <sup>an</sup> anananananananananananananananananan                                                                                                                                                                                                         | 0 สุดหลายคนและและเหลือน <sup>194</sup> นส <sup>194</sup> นสายหลายสายและและและเหลือนอาการและและเหลือนสายสายสายสายสายสายสายสายสายสายสายสายสายส                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| (mm) [3:浊兰x方向] 光标:A=-0.03393 mm                                                                                                                                                                                                                            | -2<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| N                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| (mm) [4轴下部x方回 光程:A-0.11633 mm                                                                                                                                                                                                                              | 2 [mm] [%输下部v方向1光标v4-0.01391 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| N                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| am) [5:他] ]] 光祥:A=-0.1137 am                                                                                                                                                                                                                               | 2 (mn) [5/输下部/方向] 光标-A-0.04179 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                            | 0 the second sec                               |  |  |
| 1 10 20 30 40 50                                                                                                                                                                                                                                           | -2<br>0 5 10 15 20 25 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                                                                                                                                                            | (j) The splitting condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| (1) The load reducing to 250kw condition                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| (1) The load reducing to 250KW condition                                                                                                                                                                                                                   | (mm) [2:法兰y万向] 光标:A=-0.04625 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| (1) The load reducing to 250kw condition                                                                                                                                                                                                                   | (mm) [2:法兰7万回] 光桥:A=-0.0425 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| (1) The load reducing to 250kW condition                                                                                                                                                                                                                   | 2 mm) [2 法生/7回】光标 (a + 0.0425 mm)<br>2 mm) [2 法生/7 mm] [2 mm] |  |  |
| (1) The load reducing to 250kW condition                                                                                                                                                                                                                   | 2 mm) [2: 法生/75回 光标: A=-0.0425 mm<br>2 mm) [2: 法生/75回 光标: A=-0.0425 mm<br>2 mm) [2: 法生/75回 光标: A=-0.1228 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| (1) The load reducing to 250kW condition                                                                                                                                                                                                                   | 2         mm) [2: 法生?/7回] 升析: An-0.04257 mm           2         mm) [2: 法生?/7回] 升析: An-0.04257 mm           2         mm) [2: 法生?/7回] 升析: An-0.12252 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| (1) The load reducing to 250kW condition                                                                                                                                                                                                                   | 2         mm) [2: 法生/7750] 升年1-0-04/35 mm           2         mm) [2: 法生/7750] 升年1-1-204/35 mm           2         mm) [2: 法生/7750] 升年1-1-2325 mm           2         mm/ [2: 出/1]           2         mm/ [2: 出/1]           2         mm/ [2: 出/1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| (1) The load reducing to 250kW condition                                                                                                                                                                                                                   | 2         mm) [2: 法王/万范] 升年: A=-0.04625 mm           2         mm) [2: 法王/万范] 升年: A=-0.04625 mm           2         mm) [2: 法王/万范] 升年: A=-0.04625 mm           2         mm) [2: 法王/万范] 升年: A=-0.04665 mm           2         mm) [2: 法王/万范] 升年: A=-0.04665 mm           2         mm) [2: 社工/万范] 升年: A=-0.04665 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| (1) The load reducing to 250kW condition                                                                                                                                                                                                                   | mm) [2: 法王/万司 升年: A=-0.04937 mm           mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| (1) The load reducing to 250kW condition                                                                                                                                                                                                                   | mml D: 法工 7万回 外部: A+0.04925 mm           mml D: 法工 7万回 外部: A+0.04925 mm           mml D: 法工 7万回 外部: A+0.04925 mm           mml D: 法工 7万回 外部: A+0.02928 mm           mml D: 法工 7万回 外部: A+0.02958 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| (1) The load reducing to 250kW condition                                                                                                                                                                                                                   | mm) [2: 法王/方司 外廷:A+0.04935 mm           mm) [2: 法王/方司 外廷:A+0.12335 mm           mm) [2: 法王/方司 外廷:A+0.12335 mm           mm) [2: 法王/方司 外廷:A+0.0235 mm           mm) [2: 法王/方司 / 乂王 A+0.0235 mm           mm) [2: 法王/方司 / 乂王 A+0.0235 mm           mm] [2: 社工/方司 / 乂王 A+0.0256 mm           mm] [2: 社工/方司 / 乂王 A+0.0256 mm           mm] [2: 社工/方司 / 乂王 A+0.0256 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| (1) The load reducing to 250kw condition         mil Diž 5/560 /HF-4-0.1771 mm         mil Diž 5/560 /HF-4-0.1771 mm         mil Diž 5/570 /HF-4-0.0700 mm         mil Diž 5/570 /HF-4-0.0500 mm         mil Diž TF#/770 /HE-4-0.0500 mm                   | mm1 [2:41]         12:41]           mm1 [2:42]         mm1 [2:42]           mm1 [2:42]         mm1 [2:42]           mm1 [2:42]         mm1 [2:42]           mm1 [2:42]         mm1 [2:41]           mm1 [2:41]         mm1 [2:41]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| (1) The load reducing to 250kw condition         mil Diž 5/560 Atta-0.07013 mm         mil Diž 5/560 Atta-0.0702 mm         mil Diž 5/560 Atta-0.0502 mm         mil Diž Těh/750 Atta-0.0502 mm         mil Diž 10         10       20         10       20 | mm1 [2:4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |

1283

#### Wang Liying, You Lisha

#### 4.2 SHAFT CETRELINE ORBIT ANALYSIS RESULTS OF SHAFT CSCILLATION

The x-y graph analysis is proceeded at flange and water guide bearing under all conditions, due to space problem, we take the working condition of load increasing to 600kw as an example; the axis trajectory deviation is shown in Figure 3 and Figure 4, From the graph, we can see that when conditions change or the load is adjusted, the axis trajectory is unstable and produces deviation, the offset direction is roughly same, and the offset amplitudes are different.



#### 4.2 AUTO SPECTRUM ANALYSIS RESULTS OF SHAFT OSCILLATION

The auto-spectrum analysis is used in shaft oscillation; the analytical results under each condition are shown in Table 1. From the Table 1, we can find that the vibration frequencies mainly concentrate in 1HZ, 2HZ, 6HZ, 19HZ, 25HZ, and 50HZ, the turbines rotation frequency is 6.25HZ, the vibration frequency 6HZ is close to rotation frequency 6.25HZ, the frequencies 25HZ and 50HZ respectively are 4 times and 8 times of rotation frequencies, mainly from the different number of guide vanes and runner blades, the frequencies 1HZ and 2HZ are from 0.15 to 0.3 times of rotating frequencies.

| TABLE 1 | Auto-spectrum | analysis | (HZ) |
|---------|---------------|----------|------|
|---------|---------------|----------|------|

| Direction                | X of<br>flange | Y of<br>flange | X of water<br>guide<br>bearing | Y of water<br>guide<br>bearing |
|--------------------------|----------------|----------------|--------------------------------|--------------------------------|
| the boot                 | 7,1            | 7,1            | 7,1,25,20                      | 7,1                            |
| plus exciting            | 6,1            | 6,1            | 6,1,25,19                      | 6,19                           |
| synchronization          | 6,1            | 6,1            | 6,1,25,19                      | 6,19                           |
| load increasing to 250kw | 6              | 6,1            | 6,1,25,19                      | 6                              |
| load increasing to 500kw | 6,1            | 6,1            | 6,1,25,19                      | 6                              |
| load increasing to 600kw | 6,1            | 6,1            | 6,1,25,19                      | 6                              |
| keeping 600 kw           | 6              | 6              | 6,25,19                        | 6                              |
| load reducing to 500kw   | 6,1            | 6,1            | 6,1,25,19                      | 1,6                            |
| load reducing to 250kw   | 6,1            | 6,1            | 1,6,19                         | 1,6,19                         |
| splitting                | 1,6            | 6,1            | 1,6,19                         | 1,6,19                         |
| reducing excitation      | 6,1            | 6,1            | 1,6,25                         | 1,6                            |
| shutdown                 | 4,1            | 4,1            | 1,4,25                         | 1,4                            |

4.3 THE REASON OF SHAFT SWING

Based on the above analysis, we can discover that the shaft swing is biggest change in the reduction excitation condition, it is because that the generator unbalanced magnetic pull and the bearing clearance are not uniform, moreover, the hydraulic turbine thrust bearing is positioned in the upper guide bearing and the swing of flange is always greater than that of water guide bearing, the shaft swing exists in the inflection point. In runtime, the shaft swing degrees of the main frequency is close to 6.25HZ, the rotation frequency of the turbine indicates that the axis of turbine is not straight or has some mechanical l problems such as bad entering and so on.

When the working condition changes, the shaft centreline orbit has a large range of migration, which is concerned on the electromagnetic factor and hydroelectric factor. The flange shaft orbit is elliptical and the water guide bearing shaft orbit is distorted and has more spikes, the reason is that the runner blades are impacted by water, and the different number of guide vanes and runner blades lead to the hydraulic factors such as frequency difference of water conservancy.

#### **5** Conclusions

In all working conditions, the shaft degrees are beyond the scope of the standard state, when the conditions change, the shaft centreline orbit will appear larger range of deviation. The cause of this abnormal situation is more complex, on

Wang Liying, You Lisha

the one hand, the main shaft axis is not straight has an undesirable phenomena, on the other hand, the hydro-generator exists unbalanced magnetic pull and uneven bearing clearance and so on.

In addition, there exists overweight phenomena in upper bracket, lower guide bearing, water guide bearing and head cover; when the load is 500kw, the vibration is the most serious. From the vibration frequency analysis, it also can be reflected that the causes of turbine vibration is more complex, not only the mechanical and electromagnetic aspects, but hydraulic factors are all should be considered.

#### References

- [1] Jian B Q 2007 Analysis on the development of small hydropowers in China Agricultural Engineering Technology **3** 47-9
- [2] Tao X M, Liu G N 2002 Hydraulic Stability Problem of Francis Turbine Large Electric Machine and Hydraulic Turbine 2 40-9
- [3] Pan L P, Gao M 2002 Analysis of Hydraulic Stability of Turbine Journal of Chang chun Institute of Technology 3(4) 41-3
- [4] Wang L Y, Shen T Sh, Wei D H, Liu P 2013 Experiment on vibration of aqueduct and analysis on its dynamic characteristics *Water Resources and Hydropower Engineering* 44(11) 34-9
- [5] Škifić J, Radošević A, Brajković Đ, Družeta S, Čavrak M 2013 Numerical simulations of hydraulic transients in hydropower plant Jajce II *Engineering Review* 33(1) 51-6
- [6] Wang L H 2011 Hydroelectric generating set and analysis of vibration *The Yellow River water conservancy press*: Zhengzhou

#### Acknowledgments

Supports from Xida hydropower station are highly appreciated. The helpful comments from colleagues and classmates are also gratefully acknowledged.

This work is supported by the National Natural Science Foundation of China No.11202062, the Natural Science Foundation of Hebei Province of China No. E2010001026 and the Science and Technology Research Project of University of Hebei Province No. Y2012016.

- [7] Li R Y, Li Zh H 2014 Study on the effect of sensor placement on the characteristic parameters of the turbine vibration *Electronic Design Engineering* 22(5) 161-4
- [8] Liang X 2014 An analysis of fault diagnosis of hydraulic turbinegenerator units *China Rural Water and Hydropower* 1 165-8
- [9] Hu X 2014 Research on fault diagnosis of turbine based on modal analysis Water conservancy science and technology and economy 20(1) 106-8
- [10] Han Y, Song Y H 2003 Condition monitoring techniques for electrical equipment a literature survey *IEEE Trans on Power Delivery* 18(1) 10-4
- [11] Hagenauer Z D 2004 Genomic analysis using methods from information theory Information Theory Workshop, IEEE 55–9



Liying Wang, born on January 6, 1978, in Shijiazhuang, Hebei Province, China

University studies: M.S. degree in Institute of Mechanism, Shijiazhuang Tiedao University, in 2003; she received the Ph.D. degree in vehicle engineering from Beijng Jiaotong University, China in 2014.

Scientific interests: intelligent computing, intelligent control theory, and control systems engineering.

Lisha You, born on October 14, 1989, China

Current position, grades: a graduate student at Hebei University of Engineering, China University studies: Bachelor degee in thermal energy and power engineering from Hebei University of Engineering, China in 2012. Scientific interests: hydraulic turbine and mechanical vibration.