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Abstract 

Metaheuristics Algorithms are widely recognized as one of the most practical approaches for 
Global Optimization Problems. This paper presents a comparison between two metaheuristics to 
optimize a set of eight standard benchmark functions. Among the most representative single 
solution metaheuristics, we selected Tabu Search Algorithm (TSA), to compare with a novel 
population-based metaheuristic: Cuckoo Search Algorithm (CSA). Empirical results reveal that 
the problem solving success of the TSA was better than the CSA. However, the run-time 
complexity for acquiring global minimizer by the Cuckoo Search was generally smaller than the 
Tabu Search. Besides, the hybrid TSA-Simplex Algorithm gave superior results in term of 
efficiency and run-time complexity compared to CSA or TSA tested alone. 
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1 Introduction 

Global Optimization has been an active area of research for 
several decades since optimization problems are inherent in 
nearly every research area, ranging from engineering to the 
natural sciences such as Biology or Chemistry. It is also an 
active research topic in many other areas such as 
Mathematics, Business, and the Social Sciences [1]. As 
many real-world optimization problems become more 
complex, better optimization algorithms were needed. 

In all optimization problems, the goal is to find the 
minimum or the maximum of the objective function. 
Therefore, the aim of optimization is to obtain the relevant 
parameter values allowing an objective function the 
generation of the minimum or maximum value. Thus, 
unconstrained optimization problems can be formulated as 
the minimization or the maximization of D-dimensional 
function [2]: 

     1 2 3   ,  ,  ,  , DMin or Max f x x x x x x   (1) 

The challenge of developing new methods, baptized 
Metaheuristics, which are better able to solve difficult 
problems, still attracts the interests of current researchers. 
Metaheuristic optimization is therefore a field of growing 
interest since a single metaheuristic optimization algorithm, 
which can solve all optimization problems of different types 
and structures, does not exist. 

The metaheuristic optimization algorithms use two basic 
strategies while searching for the global optimum: 
exploration and exploitation [3]. The exploration process 
succeeds in enabling the algorithm to achieve the best local 
solutions within the search space, whereas the exploitation 

process expresses the ability to reach the global optimum 
solution around the obtained local solutions. 

A metaheuristic algorithm must have some 
characteristics such as [4]: it must be able to reach rapidly 
the global optimum solution; the total calculation amount 
and the run-time required to reach the optimum must be 
acceptable for practical applications. The algorithmic 
structure of a metaheuristic has also to be simple enough to 
allow its easy adaptation to different problems. Besides, it is 
desired that the metaheuristics have very few algorithmic 
control parameters excluding the general ones like total 
Number of iterations or the size of the population (for the 
population based optimization algorithms). 

There are a wide variety of metaheuristics and a number 
of properties allowing their classification. One classification 
dimension is single solution vs. population-based [5]: Single 
solution approaches focus on modifying and improving a 
single candidate solution such as Simulated Annealing (SA) 
and Tabu Search Algorithm (TSA). Whereas population-
based approaches maintain and improve multiple candidate 
solutions such as Genetic Algorithms (GA) and Cuckoo 
Search Algorithm (CSA). 

Several comparisons of the efficiency of metaheuristic 
algorithms have been published [6-11]: It has been shown 
that TSA represents one of the most efficient heuristic 
techniques to find good quality solutions in a short running 
time compared to population-based algorithms such as GA 
or Ant Colony Optimization (ACO) [12, 13]. It has been 
shown also that CSA gave superior results compared to GA, 
Particle Swarm Optimization (PSO) and Artificial Bee 
Colony (ABC) [4, 14-15]. 

In this paper, we applied therefore CSA and TSA for 
optimizing eight standard test functions with diverse 
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properties: modality, separability, and valley landscape to 
analyze their effectiveness in terms of solution quality and 
runtime. We then compared the both metaheuristics to the 
novel algorithm combining TSA and Nelder-Mead Simplex 
minimizer. 

This paper is organized as follows: Section 2 describes 
the principles of the applied algorithms: CSA, TSA and 
Simplex algorithm as well as the test functions. In Section 3, 
we analyze and compare the results obtained in terms of run-
time and solution quality. Section 4 concludes this paper. 

2 Material and Method 

2.1 CUCKOO SEARCH ALGORITHM 

CSA is a novel population based stochastic search 
metaheuristic proposed by Yang and Deb in 2009 [16-18]. It 
is inspired by a natural mechanism; the parasitic breeding 
behavior of some cuckoo species that lay their eggs in the 
nests of host birds. Therefore, a pattern corresponds to a nest 
and similarly each individual attribute of the pattern 
corresponds to a cuckoo egg and the latter represents a new 
solution. In each computation steps, the new and potentially 
improved solutions replace the worse solutions (eggs in the 
nests).  

CSA can be briefly described using the following three 
rules [17-19]: 

1. Each cuckoo lays one egg at a time and dumps it in a 
randomly chosen nest. 

2. Best nests with high quality of eggs will be passed to 
the next generations. 

3. The number of available host nests is fixed, and a 
host bird can discover a foreign egg with a 
probability pa. In this case, the host bird can throw 
the egg away or abandon the nest and build a new one 
in a new location. 

We have chosen this population based stochastic global 
search metaheuristic algorithm because it has been shown 
that CSA is superior with respect to GA, PSO and ABC [12-
14]. Besides, several studies indicate that Cuckoo Search is 
a powerful algorithm and successful results have been 
achieved in various applications such as manufacturing 
optimization [20], physically - based runoff - erosion model 
[21] Query Optimization [22], Training Artificial Neural 
Networks [23] and PCB (Printed Circuit Boards) Drill Path 
Optimization [19] as well as Performing Phase Equilibrium 
Thermodynamic Calculations [15].  

Although this metaheuristics is novel, many 
improvements are proposed in the literature such as ICS 
(acronyms of Improved Cuckoo Search) which is proposed 
to enhance the accuracy and the convergence rate of this 
algorithm [24]. In this version, a proper strategy for tuning 
the cuckoo search parameters is used instead of keeping 
these parameters constant.  

Another modified cuckoo search algorithm is also 
presented in [25]: the authors implemented a CSA version 
where the step size is determined from the sorted, rather than 
only permuted fitness matrix.  

In exploring the search space, Yang and Deb discovered 
that the performance of the CSA could be significantly 
improved by using Lévy Flights instead of simple random 
walk [18] since Lévy Flight can maximize the efficiency of 

resource searches in uncertain environments. For this reason, 
we have selected this version of the CSA algorithm. In the 
other hand, this CSA version has outperformed both GA and 
PSO for all the test functions used in [16-17]. 

The different steps of the CSA implemented in our work 
(the minimization of test functions) can be summarized in 
the following flow chart [16-19]. 

In its original version, CSA is proposed for continuous 
problems; however, it can be extended for combinatorial 
discrete optimization problems [19, 26]. It can also be 
combined with others metaheuristics such as TSA [22], 
Scatter Search [23] and Greedy Randomized Adaptive 
Search Procedure (GRASP) [27].  

 

 
FIGURE 1 Flow Chart of CSA 

2.2 TABU SEARCH ALGORITHM 

TSA was first proposed by Fred Glover in 1986 [28]. It is 
inspired by human memory. It is so called because it avoids 
returning to recently visited solutions. At each iteration, the 
best neighbor is selected as a current solution. To avoid cycles, 
i.e.; the infinite repetition of a sequence of movements, the L 
latest movements are forbidden (L is the length of the tabu list, 
which is a short-term memory. It contains the best 
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conformations already visited). Then, the selected movements 
must be the best ones and not in the tabu list. 

Although it might seem simple to reject a solution to a 
discrete combinatorial problem if it appears in the tabu list, 
this is not the case for continuous problems.  

As for other metaheuristics, a random candidate solution 
within a neighborhood can be defined. If this solution has an 
objective value higher than the current solution 
(minimization), the decision whether to accept it or not is 
based on the content of the tabu list. However, rather than 
checking if the solution is already tabu it should be checked 
if the solution is within a certain distance of a solution in the 
tabu list [29]. A TSA with this property is called Enhanced 
Continuous Tabu Search (ECTS) [30].  

ECTS is proposed for the global optimization of multi-
minima functions, it results from an adaptation of 
combinatorial TSA that aims to follow Glover's basic 
approach as closely as possible. In order to cover a wide 
domain of possible solutions, this algorithm first performs the 
diversification: it locates the most promising areas, by fitting 
the size of the neighborhood structure to the objective function 
and its definition domain. For each located promising area, the 
algorithm continues the search by intensification within one 
promising area of the solution space. 

The flow chart presented on Figure 2 outlines the 
different steps of the ECTS used in our work.  

We have chosen this variant for its advantages [30]: first, 
its principle is rather basic, directly inspired from 
combinatorial Tabu Search. Secondly, the authors tested and 
compared the efficiency of ECTS to other published 
versions of Continuous Tabu Search and to some alternative 
algorithms like Simulated Annealing. The results revealed 
that ECTS showed a good performance for functions having 
a large number of variables. 

 

 
FIGURE 2 Flow Chart of TSA 

Among the neighbourhood search methods, TSA is 
considered as one of the most prominent, being widely used 
and providing a powerful approach for solving a large range 
of optimization problems [31]. TSA, which also has the 
advantage that only function values are used, 
(differentiability and continuity being not required), is 
characterized by the use of “memories” during the search 
[32]. Additionally, TSA needs fewer parameters to be 
adjusted than the SA algorithm. Unlike other metaheuristics, 
TSA is not trapped in local minimum [29].  

TSA is subject to several developments such as: Directed 
Tabu Search (DTS), which is a continuous TSA [33]. The 

Memory Models are also introduced in order to improve 
Tabu Search with real continuous variables [34]. 

2.3 SIMPLEX ALGORITHM  

The Nelder-Mead minimization method [35] is based on the 
comparison of function values at n+1 vertices of a general 
simplex. The simplex adapts itself via Reflection, Expansion 
as well as Contraction operations by replacing the vertex 
with the highest value by another point with lower value. 

Figure 3 illustrates the principle of the Nelder–Mead 
Simplex algorithm. 

 
(a) Reflect Transformation 

 
(b) Expand Transformation 

 
(c) Contract Outside 

Transformation 

 
(d) Contract Inside 

Transformation 

 
(e) Shrink 

FIGURE 3 Nelder–Mead Simplex Algorithm’s Principle 

We have opted for the Nelder–Mead Simplex algorithm 
because it is a classical very powerful local descent 
algorithm, making no use of the objective function 
derivatives [36].  

An overview of the algorithm is outlined in Figure 4 [37-38]: 

 
FIGURE 4 Flow Chart of Nelder-Mead Simplex Algorithm 

http://www.scholarpedia.org/article/File:NelderMead_1.jpg
http://www.scholarpedia.org/article/File:NelderMead_2.jpg
http://www.scholarpedia.org/article/File:NelderMead_4.jpg
http://www.scholarpedia.org/article/File:NelderMead_3.jpg
http://www.scholarpedia.org/article/File:NelderMead_5.jpg
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2.4 HYBRID TSA-SIMPLEX ALGORITHM  

In spite of the numerous advantages of the Tabu Search, it 
might not find a near-optimal solution for some problems, 
especially continuous ones [29], but it can find several good 
starting points for local search. For this reason, and in order 
to improve TSA effectiveness, we have applied the Nelder-
Mead minimization to the TSA solutions. Therefore, the 
initial simplex is composed of the TSA solutions.  

We have opted for the combination of these algorithms 
because many comparisons are made in this way. These 
comparisons concluded that hybrid search algorithms gave 
superior results compared with any of the algorithms tested 
individually [39-41].  

2.5 TEST FUNCTIONS  

Test functions are important to validate new optimization 
algorithms and to compare the performance of various 
algorithms. There are many test functions in the literature 
[42-45], but there is no standard list or set of benchmark 
functions to be followed.   

In order to make sure whether the tested algorithms can 
solve certain types of optimization efficiently, test functions 
should have diverse properties. So, we select a list of eight 
test problems usually used for checking the properties of the 
optimizers.  

The details of the continuous test functions used in our 
work are summarized in the following table 1. 

TABLE 1 Test Functions 

Beale Function (Non-Separable, Non-Scalable and Unimodal)  

f1(x,y) =(1.5-x+xy)² +(2.25-x+xy²)²+ (2.625-x+xy3)² 

Search Space: [-4.5;4.5]  

 

 
  

Global Minimum: f1(3 ;0.5)=0  

De Joung (or DJ) Function (Separable, Scalable, Unimodal) 

f2(x,y) = x²+y² 

Search Space: [-5.12;5.12] 

  

Global Minimum: f2(0 ;0)=0 

Goldstein and Price (or GP) Function (Non-Separable, Non-Scalable and Multimodal) 

f3(x,y)=[1+(x+y+1)²×(19−14x+3x²−14y+6xy+3y²)]× 

[30+(2x −3y)² ×(18−32x+12x²+48y−36xy+27y²)] 

Search Space: [-2;2] 

  

Global Minimum: f3(0 ;-1)=3 

Himmelblau Function (Non-Separable, Non-Scalable, and Multimodal) 

f4(x,y) = (x²+y-11)²  + (x+y²− 7)² 

Search Space: [-6;6] 

  

Global Minimum: f4(3 ;2)=0 

Matyas Function (Non-Separable, Non-Scalable and Unimodal) 

f5(x,y) =0.26(x²+y²) − 0.48xy 

Search Space: [-10;10] 

  

Global Minimum: f5(0 ;0)=0 

Rastrigin Function (Separable, Scalable and Multimodal) 

f6(x,y) = 20 + (x²-10 cos(2πx)) +  (y²-10*cos(2πy)) 

Search Space: [-5.12;5.12] 

  

Global Minimum: f6(0 ;0)=0 

Rosenbrock Function (Non-Separable, Scalable and Unimodal) 

f7(x,y) =100(x²-y)² + (x-1)² 

Search Space: [-10;10] 

  

Global Minimum: f7(1 ;1)=0 

Step Function (Separable, Scalable and Unimodal) 

f8(x,y) = (x+0.5)² + (y+0.5)² 

Search Space: [-100;100] 

  

Global Minimum: f8(0.5;0.5)=0 

These functions have diverse properties in terms of 
modality, separability and valley landscape: According to [46], 
the modality of a function corresponds to the number of 
ambiguous peaks in the function landscape. If these peaks are 
encountered during an exploration process, there is a tendency 
that the algorithm may be trapped in one of such peaks. This 
will have a negative impact on the search process, since it can 
direct the search away from the true optimal solutions. So, a 
function with more than one local optimum is called 
multimodal. These functions are used to test the ability of an 
algorithm to escape from any local minimum.  

Another test problem is formulated by separable and 
non-separable functions [46]. The dimensionality of the 
search space is an important issue with the problem. In 
general, separable functions are relatively easy to optimize, 
when compared with their inseparable counterpart, because 
each parameter of a function is independent of the other 
parameters. If all the variables are independent, then we can 

perform a sequence of n (n being the number of independent 
variables) independent optimization processes. 

Finally, a valley occurs when a narrow region of little 
change is surrounded by areas of steep descent [46] (this 
region attracts the minimizers). The progress of a search 
process of an algorithm may be slowed down significantly 
on the floor of the valley. Functions with flat surfaces pose 
a difficulty for the algorithms, as the flatness of the function 
does not give the algorithm any information to direct the 
search process towards the minima. 

3 Experiment  

To verify the reliability of the CSA, TSA and Nelder-Mead 
Simplex algorithms, several well-known test functions as 
shown in table 1 are considered.  

The parameters of the CSA, TSA and Simplex algorithms 
used in our experiments are given in the table 2 below. 
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TABLE 2 The parameters of the CSA, TSA and Simplex Algorithms 

Algorithm Parameters  

CSA 
Number of Nests     = 25  

Discovery Rate        = 0.25  

TSA 
Tabu List Length     = 10  

Neighborhood Size  = 10  

Simplex 

Alpha                       = 1.0  

Beta                          = 0.5  

Gamma                     = 2.0  

We have executed each algorithm for 1000, 10000 and 
100000 iterations. The table 3 shows the run times of the 
algorithms CSA, Simplex and TSA for 1000 iterations.  

TABLE 3 The Run-time of CSA, TSA and Simplex Algorithms 

Function Algorithm Run-time (seconds) for 1000 Iterations  

f1 

 

CSA 0.181127  

TSA 999.355000  

 0.004000  

f2 

 

CSA 0.174693  

TSA 999.476000  

Simplex 0.002000  

f3 

 

CSA 0.153440  

TSA 999.185000  

Simplex 0.0000000  

f4 CSA 0.384832  

 TSA 999.486000  

Simplex 0.002000  

f5 

 

CSA 0.137662  

TSA 999.496000  

Simplex 0.001000  

f6 

 

CSA 0.258002  

TSA 999.363000  

Simplex 0.003000  

f7 

 

CSA 0.422266  

TSA 1001.631000  

Simplex 0.003000  

f8 

 

CSA 0.203946  

TSA 999.305000  

Simplex 0.001000  

From this table, we can note that the simplex algorithm 
is the best in terms of running time and the TSA is the 
slowest algorithm. These findings remain true even for 
10000 and 100000 iterations.  

We have then executed each algorithm ten times for each 
benchmark function. The following table 4 shows the 
experimental results of the comparative performances in 
terms of best, worst and average solutions between the 
Cuckoo Search and Tabu Search Algorithms. 

TABLE 4 Best, Worst and Average Solutions of CSA and TSA 

Test function CSA TSA 

Best Worst Average Best Worst Average 

f1 0.00099507 0.1729 0,0420371609 0.003130 9.819423 1,3011135 

f2 0,0003587200 0,0032968000 0,0012535720 0,0000010000 0,0001410000 0,0000360909 

f3 3,0121 4,9408 3,93157 3,000088 97,698648 38,0309893 

f4 0,007139 0,10514 0,0340206 0,000055 0,021961 0,0043994 

f5 0,0000652940 0,0066796000 0,0024487004 0,0003460000 0,0355960000 0,0172967000 

f6 0,0966590000 1,9902000000 0,9387889000 0,0001740000 0,0189600000 0,0041338000 

f7 0,0332870000 1,4028000000 0,5478952000 0,0124640000 3,8449870000 1,0535761000 

f8 0,12119 2,5204 0,87182667 0,0019300000 0,0195940000 0,0111310909 

From the table 4 above, we can note that TSA is more 
efficient since TSA solutions are better than the CSA ones 
for six functions. However, TSA is slower than CSA.  

Besides, we can note that CSA is better for Non-
Separable, Non-Scalable and Unimodal functions (Beale 
and Matyas functions). 

In order to improve the TSA run-time, we have executed 

the hybrid algorithm TSA-Simplex: we first execute the 
TSA for only 10 iterations. We have then applied the Nelder-
Mead minimization (1000 iterations) to the TSA solutions. 
Therefore, the initial simplex is composed of the TSA 
solutions.  

The following table 5 shows the results of this 
combination. 

TABLE 5 TSA-Simplex Results 

Test function Best Worst average Runtime average 

f1 0,0000000000 0,1651646790 0,0337103523 9,90962 

f2 0,0000000000 0,00077629 0,000077629 9,90236 

f3 3,0000000000 30,1994131088 14,2549998587 9,9053 

f4 0,0000000000 0,0062818 0,00155021 9,90369 

f5 0,0000000000 0,01367587 0,00136759 9,90418 

f6 0,0000000000 0,00019708 0,000022294 9,90489 

f7 0,0000000000 3,13065288 0,77918326 9,90416 

f8 0,0000000000 0,00650235 0,00103485 9,90568 

 
The table 5 above shows obviously that the hybrid 

algorithm finds the exact solution to all the benchmark 
functions even in acceptable run-time. These findings 
remain true even when minimizing functions with 3, 4 and 
5 dimensions (3, 4 and 5 variables instead of 2) for all 
benchmarks used in our work. 

4 Conclusion 

In this study, we have selected three metaheuristic 

algorithms: CSA, TSA and Simplex method for the test of 
eight difficult optimization functions with diverse properties: 
modality, separability, and valley landscape to analyze their 
effectiveness in terms of solution quality and runtime. The 
functions were systematically optimized by the different 
metaheuristics and the results were tracked and compared.  

The results show clearly that TSA is more reliable than 
CSA since the best TSA solutions are better than the CSA 
ones in 6 functions (f2, f3, f4, f6, f7 and f8) among 8 (see table 
4), whereas CSA is faster than TSA (see table 3). Note also 
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that CSA gives good results for Non-Separable, Non-
Scalable and Unimodal functions (f1, f5). 

To improve the runtime of the TSA, we have combined 
it with simplex algorithm (as it has the best run-time). The 
hybrid algorithm is the more reliable as it successfully 
optimized all functions and found the global minima for 
each one within reasonable run-time. 

With regard to the future, we believe that the application 
of these metaheuristics to solve real-world problems such as 
molecular docking is promoting [47-51].  On the other hand, 
the CPU time could be drastically reduced by using a 
parallel version of these metaheuristics [52-54] that could be 
easily implemented on GPUs (Graphical Processing Units). 
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