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Abstract 

Cylinder deactivation is one of effective ways to improve fuel economy of engine, but will lead to changes in torsional vibration 

characteristics of shaft systems for engine. A lumped parameter model of torsional vibration of shaft systems for engine with cylinder 

deactivation was established, the numerical computing method was determined, harmonic analysis was engaged for the excitation 

torque of single cylinder. Based on these studies, torsional vibration of a V8-engine was analysed, the natural frequency results was 

verified by comparing with that of utilizing software AMESIM. The forced vibration results show that the torsional angle 

displacement of crankshaft under cylinder deactivation increases obviously, which mainly consists of the 2rd order rolling vibrations, 

but torsional stress decreases little. In order to control the rolling vibration, the measure of increasing the rotational inertia of the 

flywheel was adopted. The results after the adjustment show that the vibration of crankshaft was under control. In a word, the method 

is feasible and referred. 
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1 Introduction 
 

In recent years, cylinder deactivation is widely used to 

save fuel on some of the advanced internal combustion 

engine [1]. Cylinder deactivation, when engine working 

in partial loads, is that the fuel for several cylinders is cut 

off by some mechanism so that the remainder cylinder 

for normal combustion can run efficiently in the high 

load region [2]. Cylinder deactivation would not only 

reduces pumping losses and mechanical loss, but also 

improves fuel economy of engine, which the reason is 

that a low concentrated gas mixture can stabilize 

combustion due to increasing the mixture gas and 

reducing residual exhaust gas in the remainder cylinder. 

When vehicle accelerating fast and climbing, all 

cylinders will start work to enhance engine power output. 

Currently, the measure for the deactivating cylinder is 

now widely used by cutting off fuel and closing value 

[3].  

The fuel will be saved as much as 20% by employing 

the engine with cylinder deactivation. Nevertheless, 

under cylinder deactivation, the firing interval angle of 

remainder cylinder and the unevenness of running will 

increase. There will be changes in torsional vibration 

characteristics of rotating shaft systems for engine. The 

rotating crankshaft will produce torsional vibration due 

to the effects of periodic excitation torque, which 

torsional vibration is a common vibration form of 

rotating machinery. When excitation torque frequency 

and natural frequency of crankshaft are equal, the 

resonance in shafting be evoked. The resonance would 

have invoked a great stress of torsional vibration that can 

cause damage to the crankshaft [4]. The situation must 

be under control. Consequently, numerical analysis of 

torsional vibration for engine is very necessary. 

Torsional vibration characteristics of shaft systems 

for engine with several cylinders deactivation was 

studied in this study. For the aim of providing a 

theoretical reference for the applications of cylinder 

deactivation in engines by taking a kind of V8-engine for 

example, which the engine would run in 8 cylinder, or 4 

cylinder, The impact of torsional vibration for engine 

with and without cylinder deactivation were 

comparatively analysed. Improvement measures were 

proposed. 

 

2 Modelling and numerical computing methods 

 

2.1 LUMPED PARAMETER PHYSICAL MODELS 

 

The actual structure of rotating shafts of engine is very 

complex elastic motion bodies, as shown in Figure 1. 

According to the principle of energy conservation, they 

have been addressed as a lumped parameter physical 

model and simplified as discretized systems with several 

lumped mass discs in which consists connected massless 

elastic shaft elements [5]. Simplified equivalent model 

for torsional vibration of shaft systems was shown as 

Figure 2, which the lumped mass number represents 

different part in shaft systems. Mm represents excitation 

torque of crank. 
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FIGURE 1 Sketch of shafts systems  
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FIGURE 2 Lumped parameter model 

 

2.2 MATHEMATICAL MODEL 

 

The muli-mass lumped parameter model is a multi-

degree of freedom torsional vibration system. The kinetic 

equations of the m-th mass is expressed according to 

d'Alembert principle as follows.  
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where ( )m t , ( )m t


, ( )m t


,
mI ,

mC , 
mM , 

v  are 

respectively torsional angle displacement, angular 

velocity ,angular acceleration , rotational inertia, viscous 

damping factor excitation torque, excitation torque 

amplitude, initial phase angle for the m-th lumped mass; 

1,m mK   and 1,m mC  are respectively torsional stiffness and 

damping coefficient of shaft element m-1, m; t is the 

time. 

Each lumped mass has the same mathematical 

expression, and n lumped masses can compose n 

differential equations. It can be written in matrix form. 

.. .

( ) ( ) ( ) ( )I t C t K t M t     . (2) 

where I  is the inertia matrix; C  is the damping matrix; 

K  is the stiffness matrix; ( )M t  is the excitation torque 

vector; ( )t  is the torsional angle displacement vector. 

 

2.3 EXCITATION TORQUE MODEL FOR ENGINE 

 

Excitation torque with the periodically change is the 

energy source of torsional vibration resulted from the 

tangential force imposed on the crankpin of crank. 

 

2.3.1 Excitation torque for normal combustion cylinder 

 

Excitation torque of single cylinder under normal 

combustion cylinder is 

p j gM M M M   , (3) 

where 
pM , 

jM  and 
gM  is the excitation torque on 

crank of single cylinder pressure, reciprocating inertial 

force and moving bodies gravity, respectively. written by 

2 sin( )

4 cos
p

D
M pR

  




 , (4) 

2 2 sin( )
(cos cos 2 )

cos
j jM m R

 
   




   , (5) 

sin( )

cos
g jM m gR

 




 . (6) 

In Figure 3, where p is the cylinder pressure, which is 

obtained by the experiment or the simulation. D is the 

cylinder bore, R is the crank radius,   is the crank angle, 

  is the angle between the rod and the centre line of 

cylinder, 
j

m  is the bodies mass with the reciprocating 

motion,   is the crank and rod ratio,   is the crank 

angular velocity. 
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FIGURE 3 Sketch of crank rod system 
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2.3.2 Excitation torque for deactivating cylinder 

 

Only compression and expansion of initial air took place 

in deactivating cylinder due to the close of intake and 

exhaust valve. The excitation torque on the crank 

imposed by cylinder pressure is very small and could be 

neglected compared to explosive pressure in normal 

combustion cylinder. Nevertheless, the excitation torque 

produced by reciprocating inertial force and moving 

bodies gravity still remains with piston mechanism of 

deactivating cylinder reserved. Thus, excitation torque of 

single cylinder for deactivating cylinder would be written 

by  

j gM M M  . (7) 

The excitation torque curve of single cylinder in a 

working cycle of a V8 engine under declared working 

condition was showed in Figure 4. Figure 4(a) and 

Figure 4(b) are respectively excitation torque for normal 

combustion cylinder and deactivating cylinder.  
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FIGURE 4 Excitation torque of single cylinder in a working cycle: a) Normal combustion cylinder, b) Deactivating cylinder 

 

2.3.3 Harmonic analysis for excitation torque 

 

The periodic excitation torque of single cylinder can be 

expressed as Fourier series [6], which is equal to the sum 

of average torque and harmonic torque with different 

amplitude and different frequency, written by 

0 sin( )v

v

M a M v t  


   , (8) 

where 
0a  is the average torque, v is the order, 

v  is the 

phase angle, M  is the excitation torque amplitude under 

the v-th order. 

Each cylinder on the crankshaft in multi-cylinder 

engine works in a regular firing order. The crankshaft 

would be affected by several excitation torque, which 

have a certain amount of phase angle difference between 

each other. There are two cylinders fixed on one single 

crank on V-engine, so excitation torque of v-th order on 

one single crank is written by: 

1, 1,sin( ) sin( )v v v

R LM M v t v M v t v      R L , (9) 

where v

RM  and LM   is respectively the excitation torque 

of the v-th order of left cylinder and right cylinder on this 

single crank. where 1,L  and 1,R is respectively the firing 

interval angle of left and right cylinders compared to the 

first cylinder. 

 

2.4 NUMERICAL COMPUTING METHODS 

 

2.4.1 Numerical computing method of free vibration 

 

Free vibration is a vibration without excitation torque. 

The computation aims to solve the natural frequency and 

mode shape. Assuming that each lump mass functions a 

harmonic vibration, then the torsional angle displacement 

vector can be represented as: 

( )  tt Ae  , (10) 

1 2[ , , ]T

nA A A A   , (11) 

where A  is mode shape vector, 1A , 2A , nA  are the 

amplitude of torsional angle displacement for the first, 

second and n-th lumped mass. 

Substitute equation (10) into equation (2) and let the 

excitation torque and damping coefficient in the equation 

(2) equals to zero, which damping is neglected thanks to 

little influence to free vibration. The problem can be 

changed into solving the problem of eigenvalue of matrix 

[7].  

2( ) 0tI Ae K . (12) 
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By solving the eigenvalue and eigenvector of matrix 

/ IK , The natural frequency and mode shape can be 

obtained. 

 

2.4.2 Numerical computing method of forced vibration 

 

The computation of forced vibration aims to solve the 

torsional vibration response of shaft systems to excitation 

torque. The solution of the m-th lumped mass under the 

influence of harmonic excitation torque of the v-th order 

is written by 

r

m
iv tv v

m mA e
 




 , (13) 

where 
v

KA  and 
r

K  is respectively the amplitude and 

phase angle of torsional angle displacement for lumped 

mass m of v-th order. Substitute the solution for each 

lumped mass into equation (2) to get n united complex 

number equations. Decompose each complex number 

into the real part and the imaginary part and get the 2n 

united real number linear equations. 
v

mA  and 
r

K  could 

be obtained after solving these equations.  

According to the principle of linear superposition, the 

torsional angle displacement synthesis amplitude for the 

m-th lumped mass is written by 

sin( )
r
miv tv v

m m m m

v v

A A e A vwt
  

    . (14) 

The torsional stress synthesis amplitude for shaft 

element m, m+1 is got by 

1, 1 , 1 , 1( ) /
m

v v

m m m m m m m

v

A K A A W
    , (15) 

where 
, 1m mW 

 is the section modulus in torsion for shaft 

element m, m+1. 

 

3 Numerical analysis and simulations 

 

Torsional vibration of shaft systems was analysed with a 

V8 four-stroke engine under normal combustion of all 

cylinders and 4-cylinder deactivation. The V firing angle 

of the engine is 90
0
. The firing order is R1-L4-L2-R2-

L3-R3-R4-L1.Considered the uniformity of the output 

torque of the engine, deactivating cylinders are R1, L2, 

L3 and R4 under the 4-cylinder deactivation. The lumped 

parameter model of shaft systems of the engine is 

established as shown in Table 1.  

 

 

 

 

 

TABLE 1 Lumped parameter model of shaft systems 

Lumped 

mass number 

Rotational 

inertia (kg.m2) 

Shaft 

number 

torsional 

stiffness 

(N.m/rad) 

1 0.479 1,2 0.22e6 
2 0.185 2,3 5.404e6 

3 0.246 3,4 3.192e6 

4 0.246 4,5 3.192e6 
5 0.246 5,6 3.192e6 

6 0.246 6,7 6.606e6 
7 5.786   

 

3.1 COMPUTATION OF NATURAL FREQUENCY 

 

The natural frequency of shaft systems are same with 

normal combustion of all cylinders and under cylinder 

deactivation since there is no change in the structure of 

shaft systems. The natural frequency results are shown in 

Table 2. To verify the accuracy of the results, the 

simulation software AMESIM, which is widely used to 

simulate in the mechatronics and hydraulics domain, was 

used for the calculation of natural frequency of shaft 

systems for the engine. As shown in Table 2, the 

calculation error is less than 3%, consequently the 

results' reasonability and credibility of the calculating 

program was verified. 

 

TABLE 2 Lumped parameter model of shaft systems 

Model 

No. 

Based on this study 

(r/min) 

Based on AMESIM 

(r/min) 

Error 

(%) 

1 5890 5888 0.003 

2 13741 13634 0.7 

3 34610 34020 1.9 

4 54117 53524 1.1 

5 67245 66414 1.3 

6 74829 74214 0.8 

 

3.2 COMPUTATION OF FORCED VIBRATION 

 

3.2.1 Engine with normal combustion of all cylinders 

 

Numerical computation of forced vibration for engine 

with normal combustion is displayed in Figure 5.From 

Figure 5(a),the synthesis amplitude of torsional angle 

displacement on the free end of crankshaft (the second 

lumped mass) can reach its maximum as much as 

1700r/min. The resonance will happen when the 

frequency of excitation torque of the order 7, 7.5, 8, 8.5, 

9, 9.5, 10.5, 11 and 12 equals to the 2rd natural 

frequency of shaft systems. The peak amplitude of the 

order 8 is the highest among all orders.  

From Figure 5(b), the torsional stress synthesis 

amplitude on shaft element 6,7 (between crank 4 and 

flywheel) reaches its maximum value when this 

crankshaft speeds up to 1700r/min. The peak torsional 

stress of the order 8 is the highest among all orders.  
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3.2.2 Engine under cylinder deactivation 

 

From Figure 6(a), under 4-cylinder deactivation, the 

synthesis amplitude of torsional angle displacement on 

the free end of crankshaft sharply increases. The peak 

amplitude 1.1 is 2.4 times as large as that under normal 

combustion in the corresponding speed. The main cause 

is there appears rolling vibration of the order 2 in low 

speed region. Compared with that under normal 

combustion, the torsional angle displacement of all other 

orders except for the order 2 and 10 decreases. 

From Figure 6(b), even though rolling vibration 

forces a augmentation to the amplitude of torsional angle 

displacement on free-end, the torsional stress amplitude 

in the order 2 is not very big because the amplitude 

difference of torsional angle displacement between two 

lumped mass at the two ends of shaft element 6,7 has not 

increased a lot. Compared with that under normal 

combustion, the torsional stress amplitude of the 

synthesis and all other orders except for the order 2 and 

10 will decrease because of going up of even firing 

interval angle under 4-cylinder deactivation and reduce 

the number of normal combustion cylinders. 
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a) b) 

FIGURE 5 Torsional vibration of engine with normal combustion:  
a) Torsional angle displacement amplitude on the free end of crankshaft ,b) Torsional stress amplitude on shaft element 6,7 
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a) b) 

FIGURE 6 Torsional vibration of engine under 4-cylinder deactivation:  

a) Torsional angle displacement amplitude on the free end of crankshaft, b) Torsional stress amplitude on shaft element 6,7 

 

4 Improvement measures 

 

Rolling vibration is that torsional angle displacement 

amplitude of all lumped masses swings with the same 

value and direction. According to equation (15), Rolling 

vibration produce no torsional stress and is harmless to 

strength of shafts, but excessive amplitude of rolling 

vibration will worsen the motion characteristics and 

dynamic load for the valve train driven by the crankshaft 

and ultimately cause damage to it. The situation must be 

under control. From Figure 6(a), the amplitude of the 2 

order decreases with increase of excitation frequency (the 

product of the order and the speed of crankshaft). The 

rolling vibration amplitude of the order 2 is smaller when 

excitation frequency is located closer to the 1
st
 natural 

frequency (5900r/min). However, rolling vibration 

amplitude is not obvious in the order 0.5, 1, 1.5, the 

reason is that excitation torque vector sum of all the 

cylinders in the above orders is relatively small. It 

indicates that rolling vibration amplitude have 
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relationship with natural frequency of shaft systems and 

vector sum of all the cylinders. Above all, rolling 

vibration amplitude can be controlled by reducing natural 

frequency and excitation torque vector sum of all the 

cylinders. 

In point of the structural characteristics of the V8-

engine, the rolling vibration amplitude can be controlled 

by reducing the natural frequency through increasing the 

rotational inertia of the flywheel. The rotational inertia 

can be changed by adjusting its thickness. When the 

rotational inertia of the flywheel increase to 10.786kgm
2
, 

numerical computation of forced vibration for engine 

under 4-cylinder deactivation is shown in Figure 7. 

Compared the result before the adjustment, from 

Figure 7(a), the torsional angle displacement amplitude of 

the synthesis and the 2-th order will decrease at the speed 

of 800r/min. Torsional stress amplitude changes little 

from Figure 7(b).The amplitude of the 2 order is lower 

than allowable amplitude 5
o
 [8]. It indicates that the 

method of reducing the rolling vibration amplitude by 

adjusting the inertia of the flywheel is feasible. 
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a) b) 
FIGURE 7 Torsional vibration of engine under 4-cylinder deactivation after the adjustment:  

a) Torsional angle displacement amplitude on the free end of crankshaft, b) Torsional stress amplitude on shaft element 6,7 

 

5 Conclusion 

 

Through the numerical computation for torsional 

vibration of shaft systems for engine with deactivating 

cylinder, conclusions drawn as below: The natural 

frequency characteristics of shaft systems do not change 

under cylinder deactivation but only change of that of 

forced vibration. For a V8-engine under the normal 

combustion of all cylinders, the torsional angle 

displacement amplitude of order 8 are the biggest of all 

orders, there is no rolling vibration within the working 

speed. Under 4-cylinder deactivation, the torsional angle  

displacement amplitude had an obvious augmentation, 

which mainly consists of order 2 rolling vibrations, but 

the torsional stress synthesis amplitude decreased a little. 

In order to reduce the rolling vibration amplitude, the 

measure of reducing the natural frequency by increasing 

the rotational inertia of the flywheel was adopted. The 

results after the adjustment showed that the rolling 

vibration decreases and torsional stress amplitude 

changes little. This study contribute to comprehend the 

torsional vibration characteristics and provide 

improvement measures to control vibration for engine 

with cylinder deactivation.  
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